53 research outputs found

    Length to diameter ratio effect on heat transfer performance of simple and compound angle holes in thin-wall airfoil cooling

    Get PDF
    Heat transfer coefficients on a flat plate surface downstream a row of simple and compound angle cylindrical holes are investigated using high-resolution thermographic liquid crystal technique. A variation of flow parameters including blowing ratio, and geometry parameters including compound angle and length-to-diameter ratio are examined. Blowing ratios (M) ranging from 0.3 to 2, length to diameter ratios (L/D) from 0.5 to 5, and two compound angle (β: 0°, 45°) are employed composing a test matrix of 70 test cases. Detailed local, spanwise averaged, and area averaged heat transfer coefficients hf/h0 are presented to illustrate the effect of length-to-diameter ratio and compound angle. The film cooling performance is also evaluated using NHFR method and Δφ method by combining adiabatic film effectiveness and heat transfer coefficient data. Results indicate that Δφ method has superiority in evaluating film cooling performance due to its direct reflection of temperature reduction by film protection

    Experimental investigation of wall thickness and hole shape variation effects on full-coverage film cooling performance for a gas turbine vane

    Get PDF
    The effects of wall thickness and hole shape variation on a full-coverage film cooled turbine vane are investigated in a stationary and linear cascade utilizing the pressure sensitive paint technique. The varied wall thickness produces hole length-to-diameter ratio (L/D) in a range from L/D = 2 to 5, and holes tested include simple angle hole, compound angle hole, and fan-shaped hole. Five rows of holes are provided on the pressure side while three rows of holes are provided on the suction side, with six rows of cylindrical holes drilled on the leading edge to construct showerhead film cooling. The tested blowing ratios for the showerhead, pressure side, and suction side range from 0.25 to 1.5, with a density ratio of 1.5. The freestream Reynolds number is 1.35 × 105, based on the axial chord length and the inlet velocity, with a freestream turbulence intensity level of 3.5% at the cascade inlet. The results indicate that the wall thickness variation produces significant influence on the pressure side film cooling effectiveness, while only marginal effect on the showerhead and suction side film cooling. Also observed is that the fan-shaped hole generates the highest film cooling effectiveness on pressure or suction side. Also discussed is the surface curvature effect, combining with effects of wall thickness and hole shape variations, on the film cooling effectiveness in comparison to the flat-plate data

    Effective Spectral Emissivity of Gas Turbine Blades for Optical Pyrometry

    Get PDF
    Turbine blade temperature measurements are important for monitoring the turbine engine performance to protect the hot components from damage due to excess temperatures. However, the reflected radiation from the blades and the surrounding environment complicate the blade temperature measurements by optical pyrometers. This study characterizes the effect of the reflected radiation on the effective spectral emissivity of a three-dimensional turbine blade in a confined turbine space for optical pyrometry temperature measurements. The effective spectral emissivity distribution on a threedimensional blade was numerically determined for various wavelengths (0.8-15.0 lm) and actual blade surface emissivities for a specified turbine blade model. When the actual spectral emissivity of the blade surface is assumed to be 0.5, the effective spectral emissivity varies from 0.5 to 0.538 at the longer wavelength of 10.0 lm and further increases from 0.5 to 1.396 at the shorter wavelength of 0.9 lm. The results show that the effective emissivity distributions at shorter wavelengths differ greatly from those at longer wavelengths. There are also obvious differences between the effective spectral emissivity and the actual surface emissivity at shorter wavelengths. The effect of the effective emissivity on the temperature measurement accuracy, when using the optical pyrometry, was also investigated for various wavelengths (0.8-15.0 lm). The results show that the radiation reflected from the blades has less effect on the temperature measurements than on the effective emissivity, especially at the shorter wavelengths of 0.8-3.0 lm. However, the temperature measurements still need to be corrected using the effective spectral emissivity to improve the temperature calculation accuracy. This analysis provides guidelines for choosing the optimum measurement wavelengths for optical pyrometry in turbine engines

    Origin and evolution of a placental-specific microRNA family in the human genome

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>MicroRNAs (miRNAs) are a class of short regulatory RNAs encoded in the genome of DNA viruses, some single cell organisms, plants and animals. With the rapid development of technology, more and more miRNAs are being discovered. However, the origin and evolution of most miRNAs remain obscure. Here we report the origin and evolution dynamics of a human miRNA family.</p> <p>Results</p> <p>We have shown that all members of the miR-1302 family are derived from MER53 elements. Although the conservation scores of the MER53-derived pre-miRNA sequences are low, we have identified 36 potential paralogs of MER53-derived miR-1302 genes in the human genome and 58 potential orthologs of the human miR-1302 family in placental mammals. We suggest that in placental species, this miRNA family has evolved following the birth-and-death model of evolution. Three possible mechanisms that can mediate miRNA duplication in evolutionary history have been proposed: the transposition of the MER53 element, segmental duplications and Alu-mediated recombination. Finally, we have found that the target genes of miR-1302 are over-represented in transportation, localization, and system development processes and in the positive regulation of cellular processes. Many of them are predicted to function in binding and transcription regulation.</p> <p>Conclusions</p> <p>The members of miR-1302 family that are derived from MER53 elements are placental-specific miRNAs. They emerged at the early stage of the recent 180 million years since eutherian mammals diverged from marsupials. Under the birth-and-death model, the miR-1302 genes have experienced a complex expansion with some members evolving by segmental duplications and some by Alu-mediated recombination events.</p

    MicroRNA Genes Derived from Repetitive Elements and Expanded by Segmental Duplication Events in Mammalian Genomes

    Get PDF
    MicroRNAs (miRNAs) are a class of small noncoding RNAs that regulate gene expression by targeting mRNAs for translation repression or mRNA degradation. Many miRNAs are being discovered and studied, but in most cases their origin, evolution and function remain unclear. Here, we characterized miRNAs derived from repetitive elements and miRNA families expanded by segmental duplication events in the human, rhesus and mouse genomes. We applied a comparative genomics approach combined with identifying miRNA paralogs in segmental duplication pair data in a genome-wide study to identify new homologs of human miRNAs in the rhesus and mouse genomes. Interestingly, using segmental duplication pair data, we provided credible computational evidence that two miRNA genes are located in the pseudoautosomal region of the human Y chromosome. We characterized all the miRNAs whether they were derived from repetitive elements or not and identified significant differences between the repeat-related miRNAs (RrmiRs) and non-repeat-derived miRNAs in (1) their location in protein-coding and intergenic regions in genomes, (2) the minimum free energy of their hairpin structures, and (3) their conservation in vertebrate genomes. We found some lineage-specific RrmiR families and three lineage-specific expansion families, and provided evidence indicating that some RrmiR families formed and expanded during evolutionary segmental duplication events. We also provided computational and experimental evidence for the functions of the conservative RrmiR families in the three species. Together, our results indicate that repetitive elements contribute to the origin of miRNAs, and large segmental duplication events could prompt the expansion of some miRNA families, including RrmiR families. Our study is a valuable contribution to the knowledge of evolution and function of non-coding region in genome

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    Get PDF
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research.Peer reviewe

    LOW CYCLE FATIGUE LIFE PREDICTION METHOD FOR SINGLE CRYSTAL NICKEL-BASE SUPERALLOYS AT HIGH TEMPERATURE

    No full text
    A low cycle fatigue life prediction method for single crystal nickel-base superalloys at high temperature is presented,and the method can consider the effect of average stress,strain ratio and crystal orientation on fatigue life.Firstly,a fatigue life prediction model is established to predict fatigue life of single crystal nickel-base superalloys in the [001]and [111]crystal orientations.The model considers the effect of mean stress and strain ratio on fatigue life.Then,to consider the effect of crystal orientation of single crystal nickel based superalloys on fatigue life,the relationships of fatigue parameters between[001].[111] and other different crystal orientations are given by an orientation function.Finally,the fatigue life prediction method of single crystal nickel based superalloys for other crystal orientations is proposed by using fatigue parameters of the[001]and [111]crystal orientations.The method is validated using low cycle fatigue test data of DD3 and PWA1840 nickelbase single crystal superalloy at high temperature,and the results show that the proposed method is acceptable

    Conjugate Heat Transfer Characteristics in a Highly Thermally Loaded Film Cooling Configuration with TBC in Syngas

    No full text
    Future power equipment tends to take hydrogen or middle/low heat-value syngas as fuel for low emission. The heat transfer of a film-cooled turbine blade shall be influenced more by radiation. Its characteristic of conjugate heat transfer is studied experimentally and numerically in the paper by considering radiation heat transfer, multicomposition gas, and thermal barrier coating (TBC). The Weighted Sum of Gray Gases Spectral Model and the Discrete Transfer Model are utilized to solve the radiative heat transfer in the multicomposition field, while validated against the experimental data for the studied cases. It is shown that the plate temperature increases significantly when considering the radiation and the temperature gradient of the film-cooled plate becomes less significant. It is also shown that increasing percentage of steam in gas composition results in increased temperature on the film-cooled plate. The normalized temperature of the film-cooled plate decreases about 0.02, as the total percentage of steam in hot gas increases 7%. As for the TBC effect, it can smooth out the temperature distribution and insulate the heat to a greater extent when the radiative heat transfer becomes significant
    corecore