15 research outputs found

    Ultrafast Optical Study of Small Gold Monolayer Protected Clusters: A Closer Look at Emission

    Get PDF
    Monolayer-protected metal nanoclusters (MPCs) were investigated to probe their fundamental excitation and emission properties. In particular, gold MPCs were probed by steady-state and time-resolved spectroscopic measurements; the results were used to examine the mechanism of emission in relation to the excited states in these systems. In steady-state measurements, the photoluminescence of gold clusters in the range of 25 to 140 atoms was considerably stronger relative to larger particle analogues. The increase in emission efficiency (for Au25, Au55, and Au140 on the order of 10-5) over bulk gold may arise from a different mechanism of photoluminescence, as suggested by measurements on larger gold spheres and rods. Results of fluorescence upconversion found considerably longer lifetimes for smaller gold particles than for larger particles. Measurements of the femtosecond transient absorption of the smaller clusters suggested dramatically different behavior than what was observed for larger particles. These results, combined with the result of a new bleach band in the transient absorption signal (which is presumably due to an unforeseen ground state absorption), suggest that quantum size effects and associated discrete molecular-like state structure play a key role in enhanced visible fluorescence of small clusters

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    Get PDF
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research.Peer reviewe

    Kinesiology tape does not promote vertical jumping performance : a deceptive crossover trial

    No full text
    Background: Kinesiology tape (KINTAPE) is one of the most common adhesive therapeutic tapes. Apart from clinical applications, KINTAPE claims to be able to enhance functional performance by muscle activity facilitation. However, emerging evidence suggests that the isokinetic muscle strength remains similar when the placebo effect is eliminated. Objectives: In view of the weak relationship between functional performance and isokinetic muscle strength, this study investigated the true effects of KINTAPE on functional performance. Design: Deceptive, randomized, and crossover trial. Method: Sixty four experienced volleyball players performed vertical jumping test under three taping conditions: true facilitative KINTAPE, sham KINTAPE, and no KINTAPE. Under the pretense of applying adhesive muscle sensors, KINTAPE was applied to their quadriceps and gastrocnemius in the first two conditions. Mean maximum jump height and peak jump power were averaged from three attempts. Within-subject comparisons were conducted by repeated measure ANOVA. Results: Out of 64 participants, 30 of them were successfully deceived and they were ignorant about KINTAPE. No significant differences were found in both maximum jump height (ƞ2 = 0.001; p = 0.241) and peak jump power (ƞ2 = 0.001; p = 0.134) between three taping conditions. Conclusions: The results showed that KINTAPE did not facilitate muscle performance by generating higher jumping power or yielding a better jumping performance. These findings reinforce that previously reported muscle facilitatory effects or functional enhancement using KINTAPE may be attributed to placebo effects

    Real-Time Observation of the Electrode-Size-Dependent Evolution Dynamics of the Conducting Filaments in a SiO<sub>2</sub> Layer

    No full text
    Conducting bridge random access memory (CBRAM) is one of the most promising candidates for future nonvolatile memories. It is important to understand the scalability and retention of CBRAM cells to realize better memory performance. Here, we directly observe the switching dynamics of Cu tip/SiO<sub>2</sub>/W cells with various active electrode sizes using <i>in situ</i> transmission electron microscopy. Conducting filaments (CFs) grow from the active electrode (Cu tip) to inert electrode (W) during the SET operations. The size of the Cu tip affects the electric-field distribution, the amount of the cation injection into electrolyte, and the dimension of the CF. This study provides helpful understanding on the relationship between power consumption and retention of CBRAM cells. We also construct a theoretical model to explain the electrode-size-dependent CF growth in SET operations, showing good agreement with our experimental results

    Real-Time Observation of the Electrode-Size-Dependent Evolution Dynamics of the Conducting Filaments in a SiO<sub>2</sub> Layer

    No full text
    Conducting bridge random access memory (CBRAM) is one of the most promising candidates for future nonvolatile memories. It is important to understand the scalability and retention of CBRAM cells to realize better memory performance. Here, we directly observe the switching dynamics of Cu tip/SiO<sub>2</sub>/W cells with various active electrode sizes using <i>in situ</i> transmission electron microscopy. Conducting filaments (CFs) grow from the active electrode (Cu tip) to inert electrode (W) during the SET operations. The size of the Cu tip affects the electric-field distribution, the amount of the cation injection into electrolyte, and the dimension of the CF. This study provides helpful understanding on the relationship between power consumption and retention of CBRAM cells. We also construct a theoretical model to explain the electrode-size-dependent CF growth in SET operations, showing good agreement with our experimental results
    corecore