1,423 research outputs found
Illegal immigration and media exposure: evidence on individual attitudes
Illegal immigration has been the focus of much debate in receiving countries, but little is known about the drivers of individual attitudes towards illegal immigrants. To study this question, we use the CCES survey, which was carried out in 2006 in the USA. We find evidence that—in addition to standard labor market and welfare state considerations—media exposure is significantly correlated with public opinion on illegal immigration. Controlling for education, income, ideology, and other socio-demographic characteristics, individuals watching Fox News are 9 percentage points more likely than CBS viewers to oppose the legalization of undocumented immigrants. We find an effect of the same size and direction for CNN viewers, whereas individuals watching PBS are instead more likely to support legalization. Ideological self-selection into different news programs plays an important role, but cannot entirely explain the correlation between media exposure and attitudes about illegal immigration
Astronomical Spectroscopy
Spectroscopy is one of the most important tools that an astronomer has for
studying the universe. This chapter begins by discussing the basics, including
the different types of optical spectrographs, with extension to the ultraviolet
and the near-infrared. Emphasis is given to the fundamentals of how
spectrographs are used, and the trade-offs involved in designing an
observational experiment. It then covers observing and reduction techniques,
noting that some of the standard practices of flat-fielding often actually
degrade the quality of the data rather than improve it. Although the focus is
on point sources, spatially resolved spectroscopy of extended sources is also
briefly discussed. Discussion of differential extinction, the impact of
crowding, multi-object techniques, optimal extractions, flat-fielding
considerations, and determining radial velocities and velocity dispersions
provide the spectroscopist with the fundamentals needed to obtain the best
data. Finally the chapter combines the previous material by providing some
examples of real-life observing experiences with several typical instruments.Comment: An abridged version of a chapter to appear in Planets, Stars and
Stellar Systems, to be published in 2011 by Springer. Slightly revise
The breadth of primary care: a systematic literature review of its core dimensions
Background: Even though there is general agreement that primary care is the linchpin of effective health care delivery, to date no efforts have been made to systematically review the scientific evidence supporting this supposition. The aim of this study was to examine the breadth of primary care by identifying its core dimensions and to assess the evidence for their interrelations and their relevance to outcomes at (primary) health system level.
Methods: A systematic review of the primary care literature was carried out, restricted to English language journals reporting original research or systematic reviews. Studies published between 2003 and July 2008 were searched in MEDLINE, Embase, Cochrane Library, CINAHL, King's Fund Database, IDEAS Database, and EconLit.
Results: Eighty-five studies were identified. This review was able to provide insight in the complexity of primary care as a multidimensional system, by identifying ten core dimensions that constitute a primary care system. The structure of a primary care system consists of three dimensions: 1. governance; 2. economic conditions; and 3. workforce development. The primary care process is determined by four dimensions: 4. access; 5. continuity of care; 6. coordination of care; and 7. comprehensiveness of care. The outcome of a primary care system includes three dimensions: 8. quality of care; 9. efficiency care; and 10. equity in health. There is a considerable evidence base showing that primary care contributes through its dimensions to overall health system performance and health.
Conclusions: A primary care system can be defined and approached as a multidimensional system contributing to overall health system performance and health
Search for Gravitational Waves from Primordial Black Hole Binary Coalescences in the Galactic Halo
We use data from the second science run of the LIGO gravitational-wave
detectors to search for the gravitational waves from primordial black hole
(PBH) binary coalescence with component masses in the range 0.2--.
The analysis requires a signal to be found in the data from both LIGO
observatories, according to a set of coincidence criteria. No inspiral signals
were found. Assuming a spherical halo with core radius 5 kpc extending to 50
kpc containing non-spinning black holes with masses in the range 0.2--, we place an observational upper limit on the rate of PBH coalescence
of 63 per year per Milky Way halo (MWH) with 90% confidence.Comment: 7 pages, 4 figures, to be submitted to Phys. Rev.
Fusion of green fluorescent protein to the C-terminus of granulysin alters its intracellular localization in comparison to the native molecule
The engineering of green fluorescent protein (GFP) fusion constructs in order to visibly tag a protein of interest has become a commonly used cell biology technique. Although caveats to this approach are obvious, literature reports in which the chimeric molecule behaves differently than the native molecule are scant. This brief report describes one such case. Granulysin, a small lytic and antimicrobial protein produced by cytotoxic lymphocytes, traffics to the regulated secretory system and is subsequently released from cells upon proper stimulus. In an attempt to elucidate mechanisms by which it accumulates in and is released from cytolytic granules, GFP was fused to the C-terminus of granulysin and expressed in an NK cell line. A control construct expressing the native protein was similarly expressed. The data demonstrate that, while the fusion protein is expressed and secreted, its subcellular localization is altered in comparison to native granulysin. Thus, the addition of GFP to the C-terminus of granulysin obscures the signal(s) that cytotoxic lymphocytes use to sort it to the regulated secretory pathway despite its normal biosynthesis and secretion. This example is offered as a cautionary account for other researchers who contemplate using this technology
Performance of the CMS Cathode Strip Chambers with Cosmic Rays
The Cathode Strip Chambers (CSCs) constitute the primary muon tracking device
in the CMS endcaps. Their performance has been evaluated using data taken
during a cosmic ray run in fall 2008. Measured noise levels are low, with the
number of noisy channels well below 1%. Coordinate resolution was measured for
all types of chambers, and fall in the range 47 microns to 243 microns. The
efficiencies for local charged track triggers, for hit and for segments
reconstruction were measured, and are above 99%. The timing resolution per
layer is approximately 5 ns
Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector
Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente
Protecting labor rights in preferential trade agreements: the role of trade unions, left governments, and skilled labor
This paper investigates variation in the design of labor provisions in preferential trade agreements (PTAs) by focusing on the power of trade unions, the role of government partisanship, and the relative strength of skilled labor. We expect strong trade unions and left-leaning governments to be associated with more, and more far-reaching labor provisions in PTAs. We also expect the strength of skilled workers relative to the strength of unskilled workers to negatively correlate with the depth of labor provisions in PTAs. In addition, the effect of trade unions should be conditional on both the presence of left government and democracy. We test these hypotheses relying on an original dataset of labor provisions included in 483 PTAs signed between 1990 and 2016. This dataset covers 140 different labor provisions that relate to six overarching dimensions. The quantitative analysis finds support for the expectations concerning the influence of trade unions and the role of a country’s skill profile
- …
