382 research outputs found
Parameter Estimation for Personalization of Liver Tumor Radiofrequency Ablation
International audienceMathematical modeling has the potential to assist radiofrequency ablation (RFA) of tumors as it enables prediction of the extent of ablation. However, the accuracy of the simulation is challenged by the material properties since they are patient-specific, temperature and space dependent. In this paper, we present a framework for patient specific radiofrequency ablation modeling of multiple lesions in the case of metastatic diseases. The proposed forward model is based upon a computational model of heat diffusion, cellular necrosis and blood flow through vessels and liver which relies on patient images. We estimate the most sensitive material parameters, those need to be personalized from the available clinical imaging and data. The selected parameters are then estimated using inverse modeling such that the point to-mesh distance between the computed necrotic area and observed lesions is minimized. Based on the personalized parameters, the ablation of the remaining lesions are predicted. The framework is applied to a dataset of seven lesions from three patients including pre- and post-operative CT images. In each case, the parameters were estimated on one tumor and RFA is simulated on the other tumor(s) using these personalized parameters, assuming the parameters to be spatially invariant within the same patient. Results showed significantly good correlation between predicted and actual ablation extent (average point-to-mesh errors of 4.03 mm)
A Novel Biochemical Route for Fuels and Chemicals Production from Cellulosic Biomass
The conventional biochemical platform featuring enzymatic hydrolysis involves five key steps: pretreatment, cellulase production, enzymatic hydrolysis, fermentation, and product recovery. Sugars are produced as reactive intermediates for subsequent fermentation to fuels and chemicals. Herein, an alternative biochemical route is proposed. Pretreatment, enzymatic hydrolysis and cellulase production is consolidated into one single step, referred to as consolidated aerobic processing, and sugar aldonates are produced as the reactive intermediates for biofuels production by fermentation. In this study, we demonstrate the viability of consolidation of the enzymatic hydrolysis and cellulase production steps in the new route using Neurospora crassa as the model microorganism and the conversion of cellulose to ethanol as the model system. We intended to prove the two hypotheses: 1) cellulose can be directed to produce cellobionate by reducing β-glucosidase production and by enhancing cellobiose dehydrogenase production; and 2) both of the two hydrolysis products of cellobionate—glucose and gluconate—can be used as carbon sources for ethanol and other chemical production. Our results showed that knocking out multiple copies of β-glucosidase genes led to cellobionate production from cellulose, without jeopardizing the cellulose hydrolysis rate. Simulating cellobiose dehydrogenase over-expression by addition of exogenous cellobiose dehydrogenase led to more cellobionate production. Both of the two hydrolysis products of cellobionate: glucose and gluconate can be used by Escherichia coli KO 11 for efficient ethanol production. They were utilized simultaneously in glucose and gluconate co-fermentation. Gluconate was used even faster than glucose. The results support the viability of the two hypotheses that lay the foundation for the proposed new route
Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector
Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente
Epilepsy, hippocampal sclerosis and febrile seizures linked by common genetic variation around SCN1A
Epilepsy comprises several syndromes, amongst the most common being mesial temporal lobe epilepsy with hippocampal sclerosis. Seizures in mesial temporal lobe epilepsy with hippocampal sclerosis are typically drug-resistant, and mesial temporal lobe epilepsy with hippocampal sclerosis is frequently associated with important co-morbidities, mandating the search for better understanding and treatment. The cause of mesial temporal lobe epilepsy with hippocampal sclerosis is unknown, but there is an association with childhood febrile seizures. Several rarer epilepsies featuring febrile seizures are caused by mutations in SCN1A, which encodes a brain-expressed sodium channel subunit targeted by many anti-epileptic drugs. We undertook a genome-wide association study in 1018 people with mesial temporal lobe epilepsy with hippocampal sclerosis and 7552 control subjects, with validation in an independent sample set comprising 959 people with mesial temporal lobe epilepsy with hippocampal sclerosis and 3591 control subjects. To dissect out variants related to a history of febrile seizures, we tested cases with mesial temporal lobe epilepsy with hippocampal sclerosis with (overall n = 757) and without (overall n = 803) a history of febrile seizures. Meta-analysis revealed a genome-wide significant association for mesial temporal lobe epilepsy with hippocampal sclerosis with febrile seizures at the sodium channel gene cluster on chromosome 2q24.3 [rs7587026, within an intron of the SCN1A gene, P = 3.36 × 10(-9), odds ratio (A) = 1.42, 95% confidence interval: 1.26-1.59]. In a cohort of 172 individuals with febrile seizures, who did not develop epilepsy during prospective follow-up to age 13 years, and 6456 controls, no association was found for rs7587026 and febrile seizures. These findings suggest SCN1A involvement in a common epilepsy syndrome, give new direction to biological understanding of mesial temporal lobe epilepsy with hippocampal sclerosis with febrile seizures, and open avenues for investigation of prognostic factors and possible prevention of epilepsy in some children with febrile seizures
Revisiting the Myths of Protein Interior: Studying Proteins with Mass-Fractal Hydrophobicity-Fractal and Polarizability-Fractal Dimensions
A robust marker to describe mass, hydrophobicity and polarizability distribution holds the key to deciphering structural and folding constraints within proteins. Since each of these distributions is inhomogeneous in nature, the construct should be sensitive in describing the patterns therein. We show, for the first time, that the hydrophobicity and polarizability distributions in protein interior follow fractal scaling. It is found that (barring ‘all-α’) all the major structural classes of proteins have an amount of unused hydrophobicity left in them. This amount of untapped hydrophobicity is observed to be greater in thermophilic proteins, than that in their (structurally aligned) mesophilic counterparts. ‘All-β’(thermophilic, mesophilic alike) proteins are found to have maximum amount of unused hydrophobicity, while ‘all-α’ proteins have been found to have minimum polarizability. A non-trivial dependency is observed between dielectric constant and hydrophobicity distributions within (α+β) and ‘all-α’ proteins, whereas absolutely no dependency is found between them in the ‘all-β’ class. This study proves that proteins are not as optimally packed as they are supposed to be. It is also proved that origin of α-helices are possibly not hydrophobic but electrostatic; whereas β-sheets are predominantly hydrophobic in nature. Significance of this study lies in protein engineering studies; because it quantifies the extent of packing that ensures protein functionality. It shows that myths regarding protein interior organization might obfuscate our knowledge of actual reality. However, if the later is studied with a robust marker of strong mathematical basis, unknown correlations can still be unearthed; which help us to understand the nature of hydrophobicity, causality behind protein folding, and the importance of anisotropic electrostatics in stabilizing a highly complex structure named ‘proteins’
Characterisation of time-dependent mechanical behaviour of trabecular bone and its constituents
Trabecular bone is a porous composite material which consists of a mineral
phase (mainly hydroxyapatite), organic phase (mostly type I collagen) and water
assembled into a complex, hierarchical structure. In biomechanical modelling,
its mechanical response to loads is generally assumed to be instantaneous,
i.e. it is treated as a time-independent material. It is, however, recognised
that the response of trabecular bone to loads is time-dependent. Study
of this time-dependent behaviour is important in several contexts such as: to
understand energy dissipation ability of bone; to understand the age-related
non-traumatic fractures; to predict implant loosening due to cyclic loading; to
understand progressive vertebral deformity; and for pre-clinical evaluation of
total joint replacement.
To investigate time-dependent behaviour, bovine trabecular bone samples
were subjected to compressive loading, creep, unloading and recovery at multiple
load levels (corresponding to apparent strain of 2,000-25,000 με). The
results show that: the time-dependent behaviour of trabecular bone comprises
of both recoverable and irrecoverable strains; the strain response is nonlinearly
related to applied load levels; and the response is associated with bone volume
fraction. It was found that bone with low porosity demonstrates elastic
stiffening followed by elastic softening, while elastic softening is demonstrated
by porous bone at relatively low loads. Linear, nonlinear viscoelastic and nonlinear
viscoelastic-viscoplastic constitutive models were developed to predict
trabecular bone’s time-dependent behaviour. Nonlinear viscoelastic constitutive model was found to predict the recovery behaviour well, while nonlinear
viscoelastic-viscoplastic model predicts the full creep-recovery behaviour reasonably
well. Depending on the requirements all these models can be used to
incorporate time-dependent behaviour in finite element models.
To evaluate the contribution of the key constituents of trabecular bone and
its microstructure, tests were conducted on demineralised and deproteinised
samples. Reversed cyclic loading experiments (tension to compression) were
conducted on demineralised trabecular bone samples. It was found that demineralised
bone exhibits asymmetric mechanical response - elastic stiffening
in tension and softening in compression. This tension to compression transition
was found to be smooth. Tensile multiple-load-creep-unload-recovery experiments
on demineralised trabecular samples show irrecoverable strain (or
residual strain) even at the low stress levels. Demineralised trabecular bone
samples demonstrate elastic stiffening with increasing load levels in tension,
and their time-dependent behaviour is nonlinear with respect to applied loads .
Nonlinear viscoelastic constitutive model was developed which can predict its
recovery behaviour well. Experiments on deproteinised samples showed that
their modulus and strength are reasonably well related to bone volume fraction.
The study considers an application of time-dependent behaviour of trabecular
bone. Time-dependent properties are assigned to trabecular bone in a
bone-screw system, in which the screw is subjected to cyclic loading. It is
found that separation between bone and the screw at the interface can increase
with increasing number of cycles which can accentuate loosening. The
relative larger deformation occurs when this system to be loaded at the higher
loading frequency. The deformation at the bone-screw interface is related to
trabecular bone’s bone volume fraction; screws in a more porous bone are at
a higher risk of loosening
Evidence for widespread hydrated minerals on asteroid (101955) Bennu
Early spectral data from the Origins, Spectral Interpretation, Resource Identification, and Security-Regolith Explorer (OSIRIS-REx) mission reveal evidence for abundant hydrated minerals on the surface of near-Earth asteroid (101955) Bennu in the form of a near-infrared absorption near 2.7 µm and thermal infrared spectral features that are most similar to those of aqueously altered CM-type carbonaceous chondrites. We observe these spectral features across the surface of Bennu, and there is no evidence of substantial rotational variability at the spatial scales of tens to hundreds of metres observed to date. In the visible and near-infrared (0.4 to 2.4 µm) Bennu’s spectrum appears featureless and with a blue (negative) slope, confirming previous ground-based observations. Bennu may represent a class of objects that could have brought volatiles and organic chemistry to Earth
The dynamic geophysical environment of (101955) Bennu based on OSIRIS-REx measurements
The top-shaped morphology characteristic of asteroid (101955) Bennu, often found among fast-spinning asteroids and binary asteroid primaries, may have contributed substantially to binary asteroid formation. Yet a detailed geophysical analysis of this morphology for a fast-spinning asteroid has not been possible prior to the Origins, Spectral Interpretation, Resource Identification, and Security-Regolith Explorer (OSIRIS-REx) mission. Combining the measured Bennu mass and shape obtained during the Preliminary Survey phase of the OSIRIS-REx mission, we find a notable transition in Bennu’s surface slopes within its rotational Roche lobe, defined as the region where material is energetically trapped to the surface. As the intersection of the rotational Roche lobe with Bennu’s surface has been most recently migrating towards its equator (given Bennu’s increasing spin rate), we infer that Bennu’s surface slopes have been changing across its surface within the last million years. We also find evidence for substantial density heterogeneity within this body, suggesting that its interior is a mixture of voids and boulders. The presence of such heterogeneity and Bennu’s top shape are consistent with spin-induced failure at some point in its past, although the manner of its failure cannot yet be determined. Future measurements by the OSIRIS-REx spacecraft will provide insight into and may resolve questions regarding the formation and evolution of Bennu’s top-shape morphology and its link to the formation of binary asteroids
Combined measurement of differential and total cross sections in the H → γγ and the H → ZZ* → 4ℓ decay channels at s=13 TeV with the ATLAS detector
A combined measurement of differential and inclusive total cross sections of Higgs boson production is performed using 36.1 fb−1 of 13 TeV proton–proton collision data produced by the LHC and recorded by the ATLAS detector in 2015 and 2016. Cross sections are obtained from measured H→γγ and H→ZZ*(→4ℓ event yields, which are combined taking into account detector efficiencies, resolution, acceptances and branching fractions. The total Higgs boson production cross section is measured to be 57.0−5.9 +6.0 (stat.) −3.3 +4.0 (syst.) pb, in agreement with the Standard Model prediction. Differential cross-section measurements are presented for the Higgs boson transverse momentum distribution, Higgs boson rapidity, number of jets produced together with the Higgs boson, and the transverse momentum of the leading jet. The results from the two decay channels are found to be compatible, and their combination agrees with the Standard Model predictions
Search for High-Mass Resonances Decaying to τν in pp Collisions at √s=13 TeV with the ATLAS Detector
A search for high-mass resonances decaying to τν using proton-proton collisions at √s=13 TeV produced by the Large Hadron Collider is presented. Only τ-lepton decays with hadrons in the final state are considered. The data were recorded with the ATLAS detector and correspond to an integrated luminosity of 36.1 fb−1. No statistically significant excess above the standard model expectation is observed; model-independent upper limits are set on the visible τν production cross section. Heavy W′ bosons with masses less than 3.7 TeV in the sequential standard model and masses less than 2.2–3.8 TeV depending on the coupling in the nonuniversal G(221) model are excluded at the 95% credibility level
- …