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Epilepsy comprises several syndromes, amongst the most common being mesial temporal lobe epilepsy with hippocampal

sclerosis. Seizures in mesial temporal lobe epilepsy with hippocampal sclerosis are typically drug-resistant, and mesial temporal

lobe epilepsy with hippocampal sclerosis is frequently associated with important co-morbidities, mandating the search for better

understanding and treatment. The cause of mesial temporal lobe epilepsy with hippocampal sclerosis is unknown, but there is

an association with childhood febrile seizures. Several rarer epilepsies featuring febrile seizures are caused by mutations in

SCN1A, which encodes a brain-expressed sodium channel subunit targeted by many anti-epileptic drugs. We undertook a

genome-wide association study in 1018 people with mesial temporal lobe epilepsy with hippocampal sclerosis and 7552 control

subjects, with validation in an independent sample set comprising 959 people with mesial temporal lobe epilepsy with hippo-

campal sclerosis and 3591 control subjects. To dissect out variants related to a history of febrile seizures, we tested cases with

mesial temporal lobe epilepsy with hippocampal sclerosis with (overall n = 757) and without (overall n = 803) a history of febrile

seizures. Meta-analysis revealed a genome-wide significant association for mesial temporal lobe epilepsy with hippocampal

sclerosis with febrile seizures at the sodium channel gene cluster on chromosome 2q24.3 [rs7587026, within an intron of the

SCN1A gene, P = 3.36 � 10�9, odds ratio (A) = 1.42, 95% confidence interval: 1.26–1.59]. In a cohort of 172 individuals with

febrile seizures, who did not develop epilepsy during prospective follow-up to age 13 years, and 6456 controls, no association

was found for rs7587026 and febrile seizures. These findings suggest SCN1A involvement in a common epilepsy syndrome, give

new direction to biological understanding of mesial temporal lobe epilepsy with hippocampal sclerosis with febrile seizures, and

open avenues for investigation of prognostic factors and possible prevention of epilepsy in some children with febrile seizures.

SCN1A and MTLEHS with FS Brain 2013: 136; 3140–3150 | 3141
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Keywords: mesial temporal lobe epilepsy; mesial temporal sclerosis; SCN1A; association; complex genetics

Abbreviations: MTLEHS = mesial temporal lobe epilepsy with hippocampal sclerosis; MTLEHS + FS = MTLEHS with febrile seizures;
MTLEHS–FS = MTLEHS without febrile seizures

Introduction
Mesial temporal lobe epilepsy with hippocampal sclerosis

(MTLEHS) is typically a serious epilepsy syndrome and the most

common drug-resistant epilepsy (Berg et al., 2010). It is associated

with burdensome co-morbidities, such as memory and psychiatric

disorders. MTLEHS is the epilepsy most considered for therapeutic

neurosurgery. Although surgery is a proven therapy, only �50%

of patients have sustained postoperative seizure freedom (de Tisi

et al., 2011), and surgery can have important adverse conse-

quences. Better treatment options, or even prevention, of

MTLEHS are therefore needed, but rational therapy for MTLEHS

remains elusive because its causes are obscure (O’Dell et al.,

2012).

MTLEHS is associated with a history of febrile seizures in child-

hood (Pittau et al., 2009; O’Dell et al., 2012). About 3% of chil-

dren have febrile seizures; why only some go on to develop

epilepsy, including MTLEHS, is unknown. There are a number of

rare, genetically-determined, epilepsy syndromes in which febrile

seizures are a prominent feature, such as Dravet syndrome and

‘genetic epilepsy with febrile seizures plus’ (GEFS + ) (Oliva et al.,

2012). MTLEHS has rarely been described in families with GEFS +

(Abou-Khalil et al., 2001) or familial febrile seizures (Mantegazza

et al., 2005) associated with SCN1A mutations. In familial mesial

temporal lobe epilepsy, some family members may have hippo-

campal sclerosis (Labate et al., 2011). A cluster of families with

mesial temporal lobe epilepsy with hippocampal changes has been

described in Brazil (Andrade-Valença et al., 2008). Together, this

evidence implies genetic susceptibility to MTLEHS, although its

heritability is unknown.

We hypothesized that MTLEHS, or MTLEHS with febrile seiz-

ures, as common epilepsy syndromes, might be associated with

common genetic variation, and tested this ‘common disease-

common variant’ hypothesis in a genetic association study.

Materials and methods
All aspects of the study were approved by the relevant institutional

review board. All participants gave written informed consent.

Subjects
Patients were recruited during clinical appointments. MTLEHS was

defined as in Wieser (2004). The diagnosis was made and/or reviewed

by a consultant epileptologist who was part of this study, with access

to history and investigation results. Patients with bilateral hippocampal

sclerosis or dual pathology were excluded. One thousand and eighteen

patients were included in the discovery stage and 959 patients in the

replication. The number of patients by country is shown in Table 1,

with further details in Supplementary Table 1. A history of presence or

absence of febrile seizures was accepted only if contemporary medical

records or a parental account was available; otherwise it was

considered unknown, and not eligible for analysis. Population-based

controls (n = 7552) were included in the discovery stage, and 3591 in

the replication (Table 1 and Supplementary Table 1).

We also studied 542 individuals who had had febrile seizures but by

the last follow-up had not had unprovoked seizures. These came from

three groups: a German group; an Austrian group and the ALSPAC

(Avon Longitudinal Study of Parents and Children) cohort, the latter

followed to age 13 years (Supplementary material); MTLEHS after

febrile seizures almost always develops by the age of 15 (Neligan

et al., 2012). These cases were compared with 7387 control subjects

from three relevant populations (Table 1). For the German and

Austrian samples, the same controls as in the MTLEHS study were

used.

To minimize population stratification, only individuals of white

European ancestry were included. In the discovery stage, a combin-

ation of self-identified ancestry and EIGENSTRAT principal component

methods was used to determine European ancestry. In the replication

and febrile seizures analyses, only self-reported white individuals of

European ancestry were included. More detailed ancestry data were

available from all sources except Austria, allowing exclusion of individ-

uals self-reported as coming from countries other than those where

they were recruited.

Genotyping and quality control
In the discovery stage, all but the Austrian samples and Belgian con-

trols comprised a subset of a previously described data set

(Kasperaviciūte et al., 2010), genotyped on Illumina genome-wide

genotyping chips, mostly on Illumina Human610-Quadv1/Human1-

2M-DuoCustom. One hundred and fifty-seven Austrian patients and

332 controls were genotyped on Illumina HumanCNV370duo, and

285 Belgian controls were genotyped on Illumina HumanHap300 gen-

otyping chips. Gender and relatedness checks were performed on all

samples. The cluster plots of the top-associated single nucleotide poly-

morphisms were inspected manually. Details are given in

Kasperaviciūte et al. (2010) and in the online Supplementary material.

For replication analysis, several methods were used for genotyping.

Statistical analysis
In the discovery stage, genome-wide association analysis was per-

formed using PLINK. Only single nucleotide polymorphisms present

on both Illumina Human610-Quadv1 and Human1-2M-DuoCustom

were analysed. In the discovery stage, we performed logistic regression

using an additive model, including all significant EIGENSTRAT axes

(assessed using the Tracy-Widom statistic with P5 0.05) as covariates.

Only single nucleotide polymorphisms with minor allele frequency

of5 1% were analysed. Since the replication samples did not have

genome-wide data available to calculate EIGENSTRAT axes, we per-

formed stratified analysis using the Cochran-Mantel-Haenszel test for

2 � 2 � 8 stratified case-control subsamples deriving from eight differ-

ent recruitment countries and self-identified ancestry, using R. The

Woolf test was used to assess effect heterogeneity. Meta-analysis of

discovery and replication studies was performed using the inverse vari-

ance-weighted fixed-effects model as implemented in the GWAMA
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software (Mägi and Morris, 2010). We considered an association to be

genome-wide significant at P5 5 � 10�8.

To fine map the association signal in the discovery stage, we

imputed single nucleotide polymorphisms in the 10 Mb region

surrounding rs7587026. Imputation was performed using MINIMAC

(Howie et al., 2012), and 1000 Genomes Project data (1000 Genomes

Project Consortium et al., 2010) as the reference data set. Subsequent

association analysis was performed using MACH2DAT (Li et al., 2010)

using significant EIGENSTRAT axes as covariates.

Power calculations were performed using Genetic Power Calculator

(Purcell et al., 2003).

Expression analysis
We tested association between genotypes of the two top single nu-

cleotide polymorphisms rs7587026 and rs11692675 and SCN1A exons

and gene expression in the middle temporal cortex (Brodmann areas

20 and 21) from 78 patients with MTLEHS who had undergone sur-

gical resection, compared with 78 neurologically normal individuals

from the MRC Sudden Death Brain and Tissue Bank. We specifically

chose not to study the hippocampus to avoid confounding due to

tissue changes such as cell loss and gliosis. All samples were randomly

hybridized to Affymetrix Human Exon 1.0 ST arrays. Differential

expression of SCN1A transcripts incorporating the ‘neonatal’ or

‘adult’ exon 5 form (5N or 5A exon, respectively), and expression of

non-coding exons 1a and 1b (GenBank accession numbers DQ993522

and DQ993523, respectively) (Martin et al., 2007) in the 5’ region of

SCN1A, were tested by quantitative RT-PCR as they are not covered

by the array. Details are provided in the Supplementary material.

Further, we tested whether the associated single nucleotide poly-

morphisms have an effect on expression or splicing of any genes in the

genome in post-mortem tissue of nine brain regions from 134 control

individuals (Supplementary material).

Results

Genome-wide association analyses
We performed a two-stage study. For discovery, we first investi-

gated genome-wide association between all MTLEHS and 531 164

single nucleotide polymorphisms in 1018 MTLEHS cases and 7552

controls from seven populations of European descent (Table 1 and

Supplementary Table 1). Using logistic regression analysis and cor-

recting for population stratification, suggestive association

emerged for three single nucleotide polymorphisms in a region

of strong linkage disequilibrium on chromosome 2q24.3 encom-

passing SCN1A and other sodium channel genes (Supplementary

Fig. 1). The most strongly associated single nucleotide polymorph-

ism, rs11692675, is within intron 3 of the SCN1A full-length

Table 1 Number of individuals included in the study, after removal of population outliers and
individuals of non-European ancestry

Population Patients with
MTLEHS

Individuals with a
definite history of
febrile seizures

Individuals with a
definite history of no
febrile seizures

Controls

Discovery

Austria 157 45 104 332

Belgium 67 23 20 285

USA 71 23 45 605

Finland 116 18 0* 746

Ireland 148 54 90 209

UK 277 117 101 5116

Switzerland 182 61 0* 259

Total discovery 1018 341 360 7552

Replication

Austria 57 18 39 254

Germany 273 112 161 346

Portugal 102 54 48 190

UK 80 42 28 857

Netherlands 164 74 0* 601

Italy 44 18 26 249

Australia 162 83 79 794

USA 77 15 62 300

Total replication 959 416 443 3591

Febrile seizures study

Austria NA 158 NA 585**

Germany NA 212 NA 346***

UK (ALSPAC) NA 172 NA 6456

Total febrile seizures NA 542 NA 7387

NA = not applicable.
*Data were not collected according to the criteria used in the study.
**Combined discovery and replication Austrian controls.
***Same as replication German controls.
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transcript variant (NM_001202435.1) {P = 5.26 � 10�8, odds ratio

for G allele [OR(G)] 1.31, 95% confidence interval (CI) 1.19–1.44;

Table 2}. Two other single nucleotide polymorphisms within

SCN1A intron 1, had similarly low P-values: rs7587026

(r2 = 0.806 with rs11692675 in CEU population based on 1000

Genomes data set), P = 1.19 � 10�7 [OR(A) = 1.31, 95% CI:

1.19–1.45]; and rs580041 (r2 = 0.806 with rs11692675),

P = 5.74 � 10�7 [OR(A) = 1.29, 95% CI: 1.17–1.43].

SCN1A encodes brain-expressed voltage-gated sodium channel

type I, alpha subunit. It bears the largest number of known epi-

lepsy-related mutations, some associated with febrile seizures

(Oliva et al., 2012). The common SCN1A single nucleotide poly-

morphism rs3812718, affecting splicing (Heinzen et al., 2007), has

also been associated with febrile seizures (Schlachter et al., 2009),

though replication has failed (Petrovski et al., 2009). Retrospective

studies show association between MTLE and febrile seizures

(Pittau et al., 2009; O’Dell et al., 2012). Whether febrile seizures

cause MTLEHS (Koyama et al., 2012) or whether pre-existing

hippocampal abnormalities predispose to febrile seizures (Cendes,

2004), which may then also be injurious, is unknown. Clinical

differences between patients with and without a history of febrile

seizures suggest MTLEHS is heterogeneous (Thom et al., 2010).

Table 2 Genotype counts, allele frequencies and association results for rs7587026 and rs11692675 SNPs in the MTLEHS
study

SNP n patients n controls Minor
allele

Genotype
count
in patients

Genotype count
in controls

Minor
allele
frequency
in patients

Minor
allele
frequency
in controls

P-value* Odds ratio
(95% CI)

Discovery

MTLEHS versus controls

rs7587026 1017 7549 A 99/440/478 536/2895/4118 0.314 0.263 1.19 � 10–7 1.31 (1.19–1.45)

rs11692675 1018 7547 G 147/477/394 794/3352/3401 0.379 0.327 5.26 � 10–8 1.31 (1.19–1.44)

MTLEHS + FS versus controls

rs7587026 341 7549 A 43/161/137 536/2895/4118 0.362 0.263 2.64 � 10–8 1.59 (1.35–1.87)

rs11692675 341 7547 G 61/163/117 794/3352/3401 0.418 0.327 1.25 � 10–6 1.49 (1.27–1.75)

MTLEHS�FS versus controls

rs7587026 359 6544 A 30/143/186 469/2528/2547 0.283 0.265 0.21 1.12 (0.94–1.33)

rs11692675 360 6542 G 48/167/145 698/2951/2893 0.365 0.332 0.039 1.19 (1.01–1.40)

MTLEHS + FS versus MTLEHS�FS

rs7587026 341 359 A 43/161/137 30/143/186 0.362 0.283 1.12 � 10–3 1.48 (1.17–1.87)

rs11692675 341 360 G 61/163/117 48/167/145 0.418 0.365 0.030 1.28 (1.03–1.59)

Replication

MTLEHS versus controls

rs7587026 933 3537 A 89/360/484 247/1361/1929 0.288 0.262 0.025 1.15 (1.02–1.29)

rs11692675 826 3568 G 108/364/354 394/1615/1559 0.351 0.337 0.19 1.08 (0.96–1.21)

MTLEHS + FS versus controls

rs7587026 406 3537 A 43/163/200 247/1361/1929 0.307 0.262 5.88 � 10–3 1.26 (1.07–1.48)

rs11692675 371 3568 G 56/156/159 394/1615/1559 0.361 0.337 0.12 1.14 (0.97–1.34)

MTLEHS�FS versus controls

rs7587026 436 2972 A 42/160/234 216/1136/1620 0.280 0.264 0.20 1.11 (0.95–1.31)

rs11692675 357 2983 G 42/164/151 336/1332/1315 0.347 0.336 0.35 1.08 (0.92–1.27)

MTLEHS + FS versus MTLEHS�FS

rs7587026 338 436 A 35/137/166 42/160/234 0.306 0.280 0.22 1.16 (0.93–1.44)

rs11692675 298 357 G 46/125/127 42/164/151 0.364 0.347 0.50 1.09 (0.87–1.36)

Combined (meta-analysis)

MTLEHS versus controls

rs7587026 1950 11 086 A 188/800/962 783/4256/6047 0.302 0.263 3.78 � 10–8 1.24 (1.15–1.34)

rs11692675 1844 11 115 G 255/841/748 1188/4967/4960 0.366 0.330 4.87 � 10–7 1.21 (1.12–1.30)

MTLEHS + FS versus controls

rs7587026 747 11 086 A 86/324/337 783/4256/6047 0.332 0.263 3.36 � 10–9 1.42 (1.26–1.59)

rs11692675 712 11 115 G 117/319/276 1188/4967/4960 0.388 0.330 4.78 � 10–6 1.30 (1.16–1.46)

MTLEHS�FS versus controls

rs7587026 795 9516 A 72/303/420 685/3664/5167 0.281 0.265 0.067 1.12 (0.99–1.25)

rs11692675 717 9525 G 90/331/296 1034/4283/4208 0.356 0.333 0.033 1.13 (1.01–1.27)

MTLEHS + FS versus MTLEHS�FS

rs7587026 679 795 A 78/298/303 72/303/420 0.334 0.281 1.53 � 10–3 1.30 (1.10–1.52)

rs11692675 639 717 G 107/288/244 90/331/296 0.393 0.356 0.039 1.18 (1.01–1.38)

*In discovery stage, P-value is logistic regression P-value for additive genetic model; in replication stage, Cochran-Mantel-Haenszel test P-value.
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This evidence motivated our pre-analysis collection of febrile

seizure data, and our previous study of febrile seizures (Petrovski

et al., 2009). We performed analysis of patients in the discovery

cohort with a known history of presence of childhood febrile seiz-

ures (MTLEHS + FS, n = 341) (Table 2 and Fig. 1). The strongest

association was for rs7587026, P = 2.64 � 10�8 [OR(A) = 1.59,

95% CI: 1.35–1.87] and rs580041, P = 8.91 � 10�7 [OR(A)

= 1.56, 95% CI: 1.33–1.84], whereas the signal for rs11692675

was slightly weaker, P = 1.25 � 10�6 [OR(G) = 1.49, 95% CI:

1.27–1.75]. No association was seen in patients with MTLEHS

without febrile seizures (MTLEHS�FS), despite similar sample size.

To refine the association signal, we performed regional imput-

ation in the discovery data set of a 10 Mb region surrounding

rs7587026 using the 1000 Genomes reference panel. Two single

nucleotide polymorphisms had slightly lower P-values in the

MTLEHS + FS analysis than the original single nucleotide poly-

morphisms [rs16851603 (P = 2.23 � 10�8) and rs3919196

(P = 2.26 � 10�8)], but neither were significantly stronger than

the original associations, and these signals reflected regional link-

age disequilibrium structure (Supplementary Fig. 2). No known

functional variants in SCN1A, nor in other genes in the region,

were in high linkage disequilibrium with rs7587026. The associ-

ation signal is localized within one linkage disequilibrium block that

also spans the promoter and 5’ UTR region of SCN1A

(Supplementary Fig. 2).

Replication and combined analyses
We selected the two top single nucleotide polymorphisms,

rs7587026 and rs11692675, for replication in an independent

sample of 959 patients with MTLEHS, of whom 416 had

MTLEHS + FS, and 3591 population-matched controls of

European descent from eight populations (Table 1 and

Supplementary Table 1). We did not study rs580041 because of

its perfect linkage disequilibrium with rs7587026 in white

Europeans (r2 = 1). We detected an association between

rs7587026 and MTLEHS + FS, P = 5.88 � 10�3 [OR(A) = 1.26,

95% CI: 1.07–1.48; Table 2]; this value remains significant at a

revised alpha threshold of 6.3 � 10�3 after Bonferroni correction

for multiple comparisons in the replication cohort. No association

was detected for MTLEHS�FS.

Figure 1 The results of genome-wide association analysis in MTLEHS + FS in discovery stage. (A) Manhattan plot, � log10 (P-values) of

the logistic regression test are plotted against single nucleotide polymorphism positions on each chromosome. (B) Quantile-quantile plot,

the grey shaded area represents the 95% confidence interval of expected � log10 (P-values). Black dots represent the observed P-values;

� = 1.022. (C) Regional association results for the chromosome 2q24.3 locus. The left y-axis represents � log10 (P-values) for association

with MTLEHS, the right y-axis represents the recombination rate, and the x-axis represents base-pair positions along the chromosome

(human genome Build 37). The top single nucleotide polymorphism, rs7587026, is shown in purple, the rest of the single nucleotide

polymorphisms are coloured according to their linkage disequilibrium r2 value with rs7587026.
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Meta-analysis of the discovery and replication samples confirmed

the association of the 2q24.3 locus with MTLEHS + FS at genome-

wide significant level for rs7587026 [Pmeta = 3.36 � 10�9,

OR(A) = 1.42, 95% CI: 1.26–1.59]; the signal for rs11692675 did

not reach genome-wide significance [Pmeta = 4.78 � 10�6,

OR(G) = 1.30, 95% CI: 1.16–1.46]. No significant heterogeneity in

effect sizes was detected among different populations (Fig. 2,

Woolf’s test for heterogeneity P = 0.45, see Supplementary Tables

7–10 for allele frequencies in all populations).

Febrile seizure analysis
To explore whether the observed association with rs7587026 is

specific for MTLEHS + FS, or is specific for febrile seizures in gen-

eral, we examined a total of 7387 controls and three data sets of

patients (totalling 542) who had had febrile seizures but had not

developed epilepsy by the time of the latest follow-up. It has been

shown that almost all children who go on to develop any type of

epilepsy after febrile seizures have done so by the age of 15 years

(Neligan et al., 2012). Therefore, to address the specificity of the

association for MTLEHS + FS rather than febrile seizures alone, the

ideal febrile seizures cohort would have been followed to age 15

at least. Of the three data sets available to us, only one met this

criterion closely. The ALSPAC prospective cohort, which has the

most comprehensive phenotypic data of the three data sets,

followed children to age 13: there was no association of

rs7587026 with febrile seizures in 171 individuals who did not

go on to develop epilepsy (Table 3) in comparison with 6443

controls from the same cohort. The two other cohorts of children

with febrile seizures, from Austria [samples partially overlapping

with those reported in Schlachter et al. (2009)] and Germany,

were ascertained at a young age (to six years of age only) and

had no follow-up to establish whether the children had febrile

seizures only, or febrile seizures in the context of subsequent epi-

lepsy including MTLEHS, and are therefore not best suited to ad-

dress the question, but were examined as few cohorts overall are

available. Bearing this key caveat in mind, in these two data sets

there was an observed association of febrile seizures with

rs7587026 (Table 3). The previously reported association in the

Austrian population with an SCN1A functional splice-site single

nucleotide polymorphism, rs3812718, was also seen in our

Austrian sample [which is not unexpected as there is partial over-

lap of cases with those in the original report (Schlachter et al.,

2009)] and was present in the German sample. The observed as-

sociation of rs7587026 with febrile seizures disappeared in both

Austrian and German data sets when analysis was conditioned on

rs3812718 (P40.19; Table 3). Moreover, although the associ-

ation of febrile seizures with rs3812718 may be thought to be

of interest for pure febrile seizures alone, we note there is no

association of rs3812718 with febrile seizures in the best charac-

terized cohort, from ALSPAC (Table 3), nor in a published sample

(Petrovski et al., 2009).

Thus, although other single nucleotide polymorphisms in or near

SCN1A may predispose to pure febrile seizures, the signal we

observed in MTLEHS + FS is very unlikely to be due to the history

of febrile seizures alone. Moreover, no significant association was

detected in a group of patients with other partial epilepsies with a

history of febrile seizures [data set from Kasperaviciute et al.

(2010); rs7587026, P = 0.24, OR(A) = 1.15, 95% CI: 0.91–1.45].

The sample for this analysis was smaller (177 patients; 7552 con-

trols), but had 81% power to detect association of OR5 1.42 (as

seen in MTLEHS + FS group combined analysis) under 0.05 signifi-

cance level. Collectively, we found no evidence that the

MTLEHS + FS association was due to febrile seizures, or that it

holds for all partial epilepsies with febrile seizures.

SCN1A expression in the human brain
The observed association could act by modulating SCN1A gene

expression. The associated region harbours several alternative un-

translated SCN1A exons (Martin et al., 2007; Nakayama et al.,

2010). We did not detect association between rs7587026 and any

protein-coding exon except one (see below) or total SCN1A

expression, or with expression of untranslated 5’ exons 1a and

1b (Martin et al., 2007) (data not shown) in 78 patients and 78

control subjects.

The presence or absence of transcripts incorporating the

‘neonatal’ SCN1A exon 5 (‘5N’) was significantly different

according to genotype of the two top single nucleotide poly-

morphisms (rs11692675 and rs7587026, P-values 1.08 � 10�9

and 1.17 � 10�6, respectively; Supplementary material). For

rs11692675 and rs7587026, respectively, none and 1% of the

Figure 2 Forest plot for association of rs7587026 with

MTLEHS + FS. The confidence interval for each study population

is given by a horizontal line, and the point estimate is given by a

square whose area is inversely proportional to the standard error

of the estimate. The combined odds ratio is drawn as a diamond

with horizontal limits at the confidence limits and width inversely

proportional to its standard error. The study populations are

ordered in descending order by the number of MTLEHS + FS

cases.
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individuals with the GG and AA genotype showed SCN1A

transcripts in the neonatal form, compared with 83% and 81%

with the genotype AA or CC. This alternative splicing event is

influenced by rs3812718 (Heinzen et al., 2007). The association

of alternative splicing with rs922224 (r2 = 1 with rs3812718) was

stronger, P = 2.33 � 10�31. The level of expression of SCN1A

exon 5N was also significantly different according to genotype

(P = 1.62 � 10�11 for rs11692675, 2.70 � 10�6 for rs7587026,

7.40 � 10�34 for rs922224). In conditional analyses including all

three single nucleotide polymorphisms, only rs922224 remained

significant (P = 1.08 � 10�25). Finally, expression quantitative

trait loci analyses for subsets of patients according to a known

history of presence (n = 46) or absence (n = 27) of febrile seizures

in childhood for rs11692675 or rs7587026 showed significant dif-

ferences in the level of expression of 5N exon according to geno-

type in both MTLEHS + FS and MTLEHS�FS. Including both

rs11692675 or rs11692675 and rs922224 in the regression

models, only rs922224 remained significant in both MTLEHS + FS

and MTLEHS�FS groups (Supplementary material).

We cannot exclude the possibility that rs7587026 (or another

single nucleotide polymorphism in the high linkage disequilibrium

region) may act as an additional splicing controller to rs3812718,

but our data are consistent with rs7587026 having no solo effect

on 5N splicing. We also did not detect any correlation using a

significance level of P55 � 10�5 between rs7587026 and

expression/splicing of any other genes across the genome

(Supplementary material).

Discussion
We show that common variation in and near SCN1A may increase

susceptibility to MTLEHS + FS. Our previously published larger

genome-wide association study for a broader range of focal

epilepsies did not identify any single-single nucleotide polymorph-

ism association (Kasperaviciūte et al., 2010), but the findings

here demonstrate that associated variants may exist for more

narrowly-defined syndromes. Because the biology of most of the

epilepsies is poorly understood, there are few a priori data upon

which to base selection of the range of phenotypes to include in

studies of possible genetic causation. Our findings suggest that

focussing on clinically recognized syndromes or constellations

(Berg et al., 2010) may prove fruitful by reducing heterogeneity

before genomic analyses.

Our association seems to be specific for MTLEHS + FS, with no

association for MTLEHS�FS, febrile seizures alone or non-

MTLEHS partial epilepsies with febrile seizures. Our findings sug-

gest that there is genetic susceptibility to MTLEHS, and that it, or

hippocampal sclerosis, may not necessarily be only acquired. The

results support the concept of heterogeneity in MTLEHS, beyond

that already documented clinico-pathologically (Tassi et al., 2009;

Thom et al., 2010; Blümcke et al., 2012). However, further work

will be needed to confirm the specificity of our findings, as we did

not formally establish a significant difference in odds ratios be-

tween MTLEHS + FS and MTLEHS�FS. It would also be interesting

to explore, in a suitably-powered study, whether there is any

association with MTLE without hippocampal sclerosis.

The notably weaker association in the replication stage could be

due to several factors, the most important of which is the ‘win-

ner’s curse’ (Ioannidis et al., 2009); there may be a large number

of weak but real associations in the data, some of which achieve

genome-wide significance in a particular study through random

stochastic chance, but will not do so in another study. The asso-

ciation in our discovery cohort was replicated in the second inde-

pendent sample, but it is nevertheless important that other studies

are undertaken to further replicate our findings. Other limitations

of our study are the lack of genome-wide data in the replication

sample, preventing direct population stratification assessment,

though self-identification closely corresponds to genetically-deter-

mined ancestry (Lao et al., 2008; Wang et al., 2010), a phenom-

enon we confirmed in the discovery stage, and the small size of

some of the replication groups, reducing replication power, and

magnifying effects of undetected population admixture.

Table 3 Genotype counts, allele frequencies and association results for rs7587026, rs3812718 and rs922224 in febrile
seizures stage

Population n patients n controls Minor
allele

Genotype
count in
patients

Genotype
count in
controls

Minor allele
frequency
in patients

Minor
allele
frequency in
controls

P-value in
single SNP
association
(allelic �2 test)

P-value in
conditional
analysis**

rs7587026

Austria 158 584 A 19/58/81 31/216/337 0.304 0.238 0.017 0.19

Germany 194 337 A 15/92/87 20/116/201 0.314 0.231 0.003 0.43

UK (ALSPAC) 171 6443 A 23/59/89 498/2550/3395 0.307 0.275 0.194 0.33*

rs3812718

Austria 133 209 G 16/65/52 52/100/57 0.365 0.488 0.0015 0.030

Germany 212 344 G 32/98/82 88/166/90 0.382 0.497 0.00018 0.0012

rs922224 (proxy for rs3812718)

UK (ALSPAC) 172 6456 G 34/81/57 1371/3144/1941 0.433 0.456 0.40 0.83*

*Conditional analysis performed despite a non-significant single SNP association.

**In conditional analyses, rs7587026 was conditioned for rs3812718 (or its proxy, rs922224, for the ALSPAC cohort), while rs3812718 and rs922224 were conditioned for
rs7587026.
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As for many genome-wide association studies, we could not

narrow the association to a single gene or functional variant.

There are other genes designated ‘SCNxA’ in the vicinity:

SCN3A, SCN2A, SCN9A and SCN7A (this last does not show

any sodium channel activity in exogenous expression systems)

(Meisler et al., 2010). Among these genes, SCN2A has the most

published evidence to support its role in the epilepsies. We cannot

exclude the possibility that the association is driven by deleterious

variants in these or other nearby genes. SCN1A, however,

emerges as the most plausible candidate, due both to its proximity

to the associated region and its role in other epilepsies with febrile

seizures. Notably, our association is with a syndrome involving

hippocampal damage, whereas typically no hippocampal damage

is observed in patients with Dravet syndrome caused by deleteri-

ous changes affecting SCN1A (Catarino et al., 2011), suggesting

that SCN1A might influence epileptogenesis through various

mechanisms.

The location of the associated variants within SCN1A and over-

lapping its promoter regions (Long et al., 2008), was suggestive of

possible roles in SCN1A expression modulation. In fact, we did not

detect a definitive effect on expression of SCN1A or its exons in

temporal neocortex. However, this analysis may have been con-

founded by many factors: effects may be brain-region or cell-

population specific, as in SCN1A-related Dravet syndrome,

where consequences are only found in interneurons (Ogiwara

et al., 2007); our whole-tissue expression analysis would not

detect such subtle signals. Moreover, noting the febrile seizures

association, the effects may be temporally or spatially restricted,

acting only in childhood or/and in the stress of febrile seizures

(Koyama et al., 2012). Further studies will be needed to explore

possible functional effects.

The detected association could act in different ways, predispos-

ing to MTLEHS + FS as a distinct syndrome, or to the specific de-

velopment of MTLEHS in the context of remote febrile seizures. If

the association does indeed relate to SCN1A and function of the

encoded protein, new lines of investigation may prove possible in

the context of the existing deep knowledge of SCN1A, experimen-

tal models of MTLE and in vitro study of mechanisms of hippo-

campal dysfunction in epilepsy, as well as intriguing reports of the

role of SCN1A in many epilepsies, such as the suggestion that

mutations in SCN1A in Dravet Syndrome may protect against

hippocampal sclerosis (Auvin et al., 2008; Catarino et al., 2011).

Stratifying by febrile seizures type could also prove illuminating, as

prolonged, lateralized or repeated febrile seizures within a short

interval may have different effects to ‘uncomplicated’ febrile seiz-

ures. Our retrospective febrile seizures data were insufficiently

resolved to permit such analysis. This is an important avenue for

further investigation, because no predictors exist for the develop-

ment of epilepsy in the 3% of all the children who have febrile

seizures, and because established MTLEHS can have devastating

consequences. Eventual reliable prediction of significant risk of

MTLEHS after febrile seizures could lead to novel preventative

measures in at-risk individuals: here, we note that SCN1A encodes

an important anti-epileptic drug target and that it is possible to

pharmacologically prevent the development of epilepsy after

febrile seizures in an animal model (Koyama et al., 2012). Our

findings suggest that further work on SCN1A variation may

contribute to understanding the risk of developing MTLEHS after

febrile seizures.
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Susanne Beyer and Ulrike Strube for the technical assistance in

SNP genotyping for the Bonn MTLE cohort; and the whole

ALSPAC team, which includes interviewers, computer and labora-

tory technicians, clerical workers, research scientists, volunteers,

managers, receptionists and nurses. We would like to thank

AROS Applied Biotechnology AS company laboratories and

Affymetrix for their valuable input. We are grateful to the

Banner Sun Health Research Institute Brain and Body Donation

Program of Sun City, Arizona for the provision of human biospeci-

mens contributing to gene expression analysis of nine brain re-

gions from 134 control individuals. The Brain and Body

Donation Program is supported by the National Institute of

Neurological Disorders and Stroke (U24 NS072026 National

Brain and Tissue Resource for Parkinson’s Disease and Related

Disorders), the National Institute on Aging (P30 AG19610

Arizona Alzheimer’s Disease Core Centre), the Arizona

Department of Health Services (contract 211002, Arizona

Alzheimer’s Research Centre), the Arizona Biomedical Research

Commission (contracts 4001, 0011, 05-901 and 1001 to the

3148 | Brain 2013: 136; 3140–3150 D. Kasperavičiūt_e et al.
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