31 research outputs found

    Leptospirosis in the Asia Pacific region

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Leptospirosis is a worldwide zoonotic infection that has been recognized for decades, but the problem of the disease has not been fully addressed, particularly in resource-poor, developing countries, where the major burden of the disease occurs. This paper presents an overview of the current situation of leptospirosis in the region. It describes the current trends in the epidemiology of leptospirosis, the existing surveillance systems, and presents the existing prevention and control programs in the Asia Pacific region.</p> <p>Methods</p> <p>Data on leptospirosis in each member country were sought from official national organizations, international public health organizations, online articles and the scientific literature. Papers were reviewed and relevant data were extracted.</p> <p>Results</p> <p>Leptospirosis is highly prevalent in the Asia Pacific region. Infections in developed countries arise mainly from occupational exposure, travel to endemic areas, recreational activities, or importation of domestic and wild animals, whereas outbreaks in developing countries are most frequently related to normal daily activities, over-crowding, poor sanitation and climatic conditions.</p> <p>Conclusion</p> <p>In the Asia Pacific region, predominantly in developing countries, leptospirosis is largely a water-borne disease. Unless interventions to minimize exposure are aggressively implemented, the current global climate change will further aggravate the extent of the disease problem. Although trends indicate successful control of leptospirosis in some areas, there is no clear evidence that the disease has decreased in the last decade. The efficiency of surveillance systems and data collection varies significantly among the countries and areas within the region, leading to incomplete information in some instances. Thus, an accurate reflection of the true burden of the disease remains unknown.</p

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    Get PDF
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research.Peer reviewe

    PEROXIDASE ACTIVITY IN TOMATO CULTIVARS SUSCEPTIBLE TO FUSARIUM OXSYPORUM

    No full text
    Not AvailableThe total phenol content, peroxidase and polyphenol oxidase enzyme activities and the total protein profile in tomato cultivars (Lycopersicon esculantum Mill.), tolerant and susceptible to Fusarium wilt disease was studied. The tolerant cultivars of tomato viz., FEB-2, FEB-4, FloraDade and NF-31 had significantly higher phenol content as well as peroxidase and polyphenol oxidase activities than the susceptible ones (Sel-7, Sel-18 and Punjab Chhuhara). The maximum peroxidase activity was recorded in the resistant cultivar, Flora Dade (02.073unit/ml) and minimum in the susceptible cultivar,Sel-18 (0.241unit/ml). Major differences in soluble protein banding pattern were observed in the susceptible and resistant cultivars. The hierarchical cluster analysis was performed using NTSYS-pc(V.1.8) software. The dendrogram using the average linkage between the groups, showed proximity of resistant cultivars viz., FEB-4,FEB-2, Flora Dade and NF-31 to the wild species with respect to similarity of banding patterns. The three susceptible cultivars viz., Sel-7, Punjab Chhuhara and Sel-18 were grouped separately.Not Availabl

    Not Available

    No full text
    Not AvailableWheat is a staple food worldwide and provides 40% of the calories in the diet. Climate change and global warming pose a threat to wheat production, however, and demand a deeper understanding of how heat stress might impact wheat production and wheat biology. However, it is difficult to identify novel heat stress associated genes when the genomic information is not available. Wheat has a very large and complex genome that is about 37 times the size of the rice genome. The present study sequenced the whole transcriptome of the wheat cv. HD2329 at the flowering stage, under control (22 – 3C) and heat stress (42C, 2 h) conditions using Illumina HiSeq and Roche GS-FLX 454 platforms. We assembled more than 26.3 and 25.6 million high-quality reads from the control and HS-treated tissues transcriptome sequences respectively. About 76,556 (control) and 54,033 (HS-treated) contigs were assembled and annotated de novo using different assemblers and a total of 21,529 unigenes were obtained. Gene expression profile showed significant differential expression of 1525transcripts under heat stress, of which 27 transcripts showed very high (>10) fold upregulation. Cellular processes such as metabolic processes, protein phosphorylation, oxidations-reductions, among others were highly influenced by heat stress. In summary, these observations significantly enrich the transcript dataset of wheat available on public domain and show a de novo approach to discover the heat-responsive transcripts of wheat, which can accelerate the progress of wheat stress-genomics as well as the course of wheat breeding programs in the era of climate change.Not Availabl

    Not Available

    No full text
    Not AvailableTerminal heat stress (HS) has adverse efect on the quantity and quality of wheat grains, as evident from the reduction in the yield. Plant has inherited tolerance mechanism to protect itself from the environmental stresses by modulating the expression and activity of stress associated genes (SAGs)/proteins (SAPs) which protect the plant from the damage caused by HS. Heat shock transcription factor (HSF) regulates the expression of SAGs in plant under HS. Bioinformatics and phylogenetic characterization of wheat showed the presence of 56 HSFs classifed into three groups—A, B, and C. The regulation of Plant HSFs basically takes place at transcriptional, post-transcriptional, translational, and post-translation levels. It also undergoes post-translational modifcations such as phosphorylation, ubiquitination, and Small Ubiquitin-like MOdifer (SUMO)-mediated degradation. The expression of Heat Shock Protein (HSP) genes in response to various stimuli is regulated by HSFs. HSF1 has been reported to be the master regulator for cytoprotective HSPs expression. HSF potentially bind and activate his own promoters as well as the promoters of other members of their gene family. HSFs perceive the elevation in temperature through different signaling molecules like H2O2, kinases and ultimately increase the expression of HSPs and other SAPs inside the cell in order to protect the nascent protein from denaturation. HSFs, being placed at pivotal position, needs to be further identifed, characterized and manipulated using the advanced genetic tools in order to regulate the expression of potential genes involved in defense mechanism of plants under stress. It can also be used as potential molecular marker in wheat breeding program.Not Availabl

    Protection from terminal heat stress: a trade-off between heat-responsive transcription factors (HSFs) and stress-associated genes (SAGs) under changing environment

    No full text
    Terminal heat stress (HS) has adverse effect on the quantity and quality of wheat grains, as evident from the reduction in the yield. Plant has inherited tolerance mechanism to protect itself from the environmental stresses by modulating the expression and activity of stress associated genes (SAGs)/proteins (SAPs) which protect the plant from the damage caused by HS. Heat shock transcription factor (HSF) regulates the expression of SAGs in plant under HS. Bioinformatics and phylogenetic characterization of wheat showed the presence of 56 HSFs classified into three groups—A, B, and C. The regulation of Plant HSFs basically takes place at transcriptional, post-transcriptional, translational, and post-translation levels. It also undergoes post-translational modifications such as phosphorylation, ubiquitination, and Small Ubiquitin-like MOdifier (SUMO)-mediated degradation. The expression of Heat Shock Protein (HSP) genes in response to various stimuli is regulated by HSFs. HSF1 has been reported to be the master regulator for cytoprotective HSPs expression. HSF potentially bind and activate his own promoters as well as the promoters of other members of their gene family. HSFs perceive the elevation in temperature through different signaling molecules like H2O2, kinases and ultimately increase the expression of HSPs and other SAPs inside the cell in order to protect the nascent protein from denaturation. HSFs, being placed at pivotal position, needs to be further identified, characterized and manipulated using the advanced genetic tools in order to regulate the expression of potential genes involved in defense mechanism of plants under stress. It can also be used as potential molecular marker in wheat breeding program

    Protection from terminal heat stress: a trade‑of between heat‑responsive transcription factors (HSFs) and stress‑associated genes (SAGs) under changing environment

    No full text
    Not AvailableTerminal heat stress (HS) has adverse effect on the quantity and quality of wheat grains, as evident from the reduction in the yield. Plant has inherited tolerance mechanism to protect itself from the environmental stresses by modulating the expression and activity of stress associated genes (SAGs)/proteins (SAPs) which protect the plant from the damage caused by HS. Heat shock transcription factor (HSF) regulates the expression of SAGs in plant under HS. Bioinformatics and phylogenetic characterization of wheat showed the presence of 56 HSFs classified into three groups—A, B, and C. The regulation of Plant HSFs basically takes place at transcriptional, post-transcriptional, translational, and post-translation levels. It also undergoes post-translational modifications such as phosphorylation, ubiquitination, and Small Ubiquitin-like MOdifier (SUMO)-mediated degradation. The expression of Heat Shock Protein (HSP) genes in response to various stimuli is regulated by HSFs. HSF1 has been reported to be the master regulator for cytoprotective HSPs expression. HSF potentially bind and activate his own promoters as well as the promoters of other members of their gene family. HSFs perceive the elevation in temperature through different signaling molecules like H2O2, kinases and ultimately increase the expression of HSPs and other SAPs inside the cell in order to protect the nascent protein from denaturation. HSFs, being placed at pivotal position, needs to be further identified, characterized and manipulated using the advanced genetic tools in order to regulate the expression of potential genes involved in defense mechanism of plants under stress. It can also be used as potential molecular marker in wheat breeding program.Not Availabl
    corecore