32 research outputs found

    The state of the Martian climate

    Get PDF
    60°N was +2.0°C, relative to the 1981–2010 average value (Fig. 5.1). This marks a new high for the record. The average annual surface air temperature (SAT) anomaly for 2016 for land stations north of starting in 1900, and is a significant increase over the previous highest value of +1.2°C, which was observed in 2007, 2011, and 2015. Average global annual temperatures also showed record values in 2015 and 2016. Currently, the Arctic is warming at more than twice the rate of lower latitudes

    Human Breast Milk and Antiretrovirals Dramatically Reduce Oral HIV-1 Transmission in BLT Humanized Mice

    Get PDF
    Currently, over 15% of new HIV infections occur in children. Breastfeeding is a major contributor to HIV infections in infants. This represents a major paradox in the field because in vitro, breast milk has been shown to have a strong inhibitory effect on HIV infectivity. However, this inhibitory effect has never been demonstrated in vivo. Here, we address this important paradox using the first humanized mouse model of oral HIV transmission. We established that reconstitution of the oral cavity and upper gastrointestinal (GI) tract of humanized bone marrow/liver/thymus (BLT) mice with human leukocytes, including the human cell types important for mucosal HIV transmission (i.e. dendritic cells, macrophages and CD4+ T cells), renders them susceptible to oral transmission of cell-free and cell-associated HIV. Oral transmission of HIV resulted in systemic infection of lymphoid and non-lymphoid tissues that is characterized by the presence of HIV RNA in plasma and a gradual decline of CD4+ T cells in peripheral blood. Consistent with infection of the oral cavity, we observed virus shedding into saliva. We then evaluated the role of human breast milk on oral HIV transmission. Our in vivo results demonstrate that breast milk has a strong inhibitory effect on oral transmission of both cell-free and cell-associated HIV. Finally, we evaluated the effect of antiretrovirals on oral transmission of HIV. Our results show that systemic antiretrovirals administered prior to exposure can efficiently prevent oral HIV transmission in BLT mice

    Measurement of detector-corrected observables sensitive to the anomalous production of events with jets and large missing transverse momentum in pp collisions at √s=13 TeV using the ATLAS detector

    Get PDF
    Observables sensitive to the anomalous production of events containing hadronic jets and missing momentum in the plane transverse to the proton beams at the Large Hadron Collider are presented. The observables are defined as a ratio of cross sections, for events containing jets and large missing transverse momentum to events containing jets and a pair of charged leptons from the decay of a Z/γ ∗ boson. This definition minimises experimental and theoretical systematic uncertainties in the measurements. This ratio is measured differentially with respect to a number of kinematic properties of the hadronic system in two phase-space regions; one inclusive single-jet region and one region sensitive to vectorboson- fusion topologies. The data are found to be in agreement with the Standard Model predictions and used to constrain a variety of theoretical models for dark-matter production, including simplified models, effective field theory models, and invisible decays of the Higgs boson. The measurements use 3.2 fb−1 of proton–proton collision data recorded by the ATLAS experiment at a centre-of-mass energy of 13TeV and are fully corrected for detector effects, meaning that the data can be used to constrain new-physics models beyond those shown in this paper

    State of the climate in 2018

    Get PDF
    In 2018, the dominant greenhouse gases released into Earth’s atmosphere—carbon dioxide, methane, and nitrous oxide—continued their increase. The annual global average carbon dioxide concentration at Earth’s surface was 407.4 ± 0.1 ppm, the highest in the modern instrumental record and in ice core records dating back 800 000 years. Combined, greenhouse gases and several halogenated gases contribute just over 3 W m−2 to radiative forcing and represent a nearly 43% increase since 1990. Carbon dioxide is responsible for about 65% of this radiative forcing. With a weak La Niña in early 2018 transitioning to a weak El Niño by the year’s end, the global surface (land and ocean) temperature was the fourth highest on record, with only 2015 through 2017 being warmer. Several European countries reported record high annual temperatures. There were also more high, and fewer low, temperature extremes than in nearly all of the 68-year extremes record. Madagascar recorded a record daily temperature of 40.5°C in Morondava in March, while South Korea set its record high of 41.0°C in August in Hongcheon. Nawabshah, Pakistan, recorded its highest temperature of 50.2°C, which may be a new daily world record for April. Globally, the annual lower troposphere temperature was third to seventh highest, depending on the dataset analyzed. The lower stratospheric temperature was approximately fifth lowest. The 2018 Arctic land surface temperature was 1.2°C above the 1981–2010 average, tying for third highest in the 118-year record, following 2016 and 2017. June’s Arctic snow cover extent was almost half of what it was 35 years ago. Across Greenland, however, regional summer temperatures were generally below or near average. Additionally, a satellite survey of 47 glaciers in Greenland indicated a net increase in area for the first time since records began in 1999. Increasing permafrost temperatures were reported at most observation sites in the Arctic, with the overall increase of 0.1°–0.2°C between 2017 and 2018 being comparable to the highest rate of warming ever observed in the region. On 17 March, Arctic sea ice extent marked the second smallest annual maximum in the 38-year record, larger than only 2017. The minimum extent in 2018 was reached on 19 September and again on 23 September, tying 2008 and 2010 for the sixth lowest extent on record. The 23 September date tied 1997 as the latest sea ice minimum date on record. First-year ice now dominates the ice cover, comprising 77% of the March 2018 ice pack compared to 55% during the 1980s. Because thinner, younger ice is more vulnerable to melting out in summer, this shift in sea ice age has contributed to the decreasing trend in minimum ice extent. Regionally, Bering Sea ice extent was at record lows for almost the entire 2017/18 ice season. For the Antarctic continent as a whole, 2018 was warmer than average. On the highest points of the Antarctic Plateau, the automatic weather station Relay (74°S) broke or tied six monthly temperature records throughout the year, with August breaking its record by nearly 8°C. However, cool conditions in the western Bellingshausen Sea and Amundsen Sea sector contributed to a low melt season overall for 2017/18. High SSTs contributed to low summer sea ice extent in the Ross and Weddell Seas in 2018, underpinning the second lowest Antarctic summer minimum sea ice extent on record. Despite conducive conditions for its formation, the ozone hole at its maximum extent in September was near the 2000–18 mean, likely due to an ongoing slow decline in stratospheric chlorine monoxide concentration. Across the oceans, globally averaged SST decreased slightly since the record El Niño year of 2016 but was still far above the climatological mean. On average, SST is increasing at a rate of 0.10° ± 0.01°C decade−1 since 1950. The warming appeared largest in the tropical Indian Ocean and smallest in the North Pacific. The deeper ocean continues to warm year after year. For the seventh consecutive year, global annual mean sea level became the highest in the 26-year record, rising to 81 mm above the 1993 average. As anticipated in a warming climate, the hydrological cycle over the ocean is accelerating: dry regions are becoming drier and wet regions rainier. Closer to the equator, 95 named tropical storms were observed during 2018, well above the 1981–2010 average of 82. Eleven tropical cyclones reached Saffir–Simpson scale Category 5 intensity. North Atlantic Major Hurricane Michael’s landfall intensity of 140 kt was the fourth strongest for any continental U.S. hurricane landfall in the 168-year record. Michael caused more than 30 fatalities and 25billion(U.S.dollars)indamages.InthewesternNorthPacific,SuperTyphoonMangkhutledto160fatalitiesand25 billion (U.S. dollars) in damages. In the western North Pacific, Super Typhoon Mangkhut led to 160 fatalities and 6 billion (U.S. dollars) in damages across the Philippines, Hong Kong, Macau, mainland China, Guam, and the Northern Mariana Islands. Tropical Storm Son-Tinh was responsible for 170 fatalities in Vietnam and Laos. Nearly all the islands of Micronesia experienced at least moderate impacts from various tropical cyclones. Across land, many areas around the globe received copious precipitation, notable at different time scales. Rodrigues and Réunion Island near southern Africa each reported their third wettest year on record. In Hawaii, 1262 mm precipitation at Waipā Gardens (Kauai) on 14–15 April set a new U.S. record for 24-h precipitation. In Brazil, the city of Belo Horizonte received nearly 75 mm of rain in just 20 minutes, nearly half its monthly average. Globally, fire activity during 2018 was the lowest since the start of the record in 1997, with a combined burned area of about 500 million hectares. This reinforced the long-term downward trend in fire emissions driven by changes in land use in frequently burning savannas. However, wildfires burned 3.5 million hectares across the United States, well above the 2000–10 average of 2.7 million hectares. Combined, U.S. wildfire damages for the 2017 and 2018 wildfire seasons exceeded $40 billion (U.S. dollars)

    AI is a viable alternative to high throughput screening: a 318-target study

    Get PDF
    : High throughput screening (HTS) is routinely used to identify bioactive small molecules. This requires physical compounds, which limits coverage of accessible chemical space. Computational approaches combined with vast on-demand chemical libraries can access far greater chemical space, provided that the predictive accuracy is sufficient to identify useful molecules. Through the largest and most diverse virtual HTS campaign reported to date, comprising 318 individual projects, we demonstrate that our AtomNet® convolutional neural network successfully finds novel hits across every major therapeutic area and protein class. We address historical limitations of computational screening by demonstrating success for target proteins without known binders, high-quality X-ray crystal structures, or manual cherry-picking of compounds. We show that the molecules selected by the AtomNet® model are novel drug-like scaffolds rather than minor modifications to known bioactive compounds. Our empirical results suggest that computational methods can substantially replace HTS as the first step of small-molecule drug discovery

    Time Profile of Climate Change Stabilization Policy

    No full text

    Cell ‘guidling'

    No full text
    A binary logic to explain cell genesi

    Gene expression patterns in melanocytic cells: candidate markers for early stage and malignant transformation

    No full text
    Different stages of differentiation of human melanocytic cells, such as normal melanocytes, naevus and melanoma cells, reflect distinct gene expression patterns. A PCR-based subtractive hybridization and display method was applied to identify genes that are differentially expressed in melanocytic cells in relation to early stage and malignant transformation. This resulted in the identification of a number of candidate cDNAs differentially expressed among melanocytes, naevus cells, and (non)-metastatic melanoma cells. Out of this collection of cDNAs, 16 clones were screened that comprised 12 novel genes, one previously identified expressed sequence tag related to vesicular trafficking (Ras-related protein Rab5b). The other three were also known genes that were either related to cell motility (beta-tubulin), pre-mRNA splicing (small nuclear protein U1A), or of unknown function (the human TI227-H gene). The differential expression patterns of Rab5b and two novel gene fragments (pCMa1, pCMn2) were further assessed in melanocytic cells. pCMa1 was expressed more in metastatic melanoma than in primary melanoma cells. In contrast, pCMn2 was expressed in both non-metastatic and metastatic melanoma cells, but was not detectable in either normal melanocytes or naevus cells. The Ras-related protein Rab5b showed lower levels of expression in highly metastatic than in other melanoma cells. These three cDNAs may therefore be involved in the early stage and malignant transformation of melanocyte

    Activated Leukocyte Cell Adhesion Molecule/CD166, a Marker of Tumor Progression in Primary Malignant Melanoma of the Skin

    No full text
    Expression of activated leukocyte cell adhesion molecule (ALCAM)/CD166 correlates with the aggregation and metastatic capacity of human melanoma cell lines (Am J Pathol 1998, 152:805–813). Immunohistochemistry on a series of human melanocytic lesions reveals that ALCAM expression correlates with melanoma progression. Most nevi (34/38) and all thin melanomas studied (Clark levels I and II) did not express ALCAM. In contrast, immunoreactivity was detected in the invasive, vertical growth phase of 2 of the 13 Clark level III lesions tested. The fraction of positive lesions further increased in Clark level IV (13/19) and in Clark level V (4/4) lesions. ALCAM expression was exclusively detectable in the vertical growth phase of the primary tumor. In melanoma metastases, approximately half of the lesions tested (13/28) were ALCAM positive. According to the Breslow-thickness, ALCAM expression was observed in less than 10% of the lesions that were thinner than 1.5 mm and in over 70% of the lesions that were thicker than 1.5 mm. Our results strongly suggest that ALCAM plays an important role in melanocytic tumor progression and depict it as a new molecular marker for neoplastic progression of primary human melanoma

    Weather- and climate-related natural hazards in Europe

    No full text
    Since 2003, Europe has experienced several extreme summer heat waves. Such heat waves are projected to occur as often as every 2 years in the second half of the 21st century, under a high emissions scenario (RCP8.5). The impacts will beparticularly strong in southern Europe.Heavy precipitation events have increased in northern and north-eastern Europe since the 1960s, whereas different indices show diverging trends for south-western and southern Europe. Heavy precipitation events are projected tobecome more frequent in most parts of Europe.The number of very severe flood events in Europe has varied since 1980, but the economic losses have increased. It isnot currently possible to quantify the contribution due to increased heavy precipitation in parts of Europe compared with better reporting and land use changes.Observations of windstorm location, frequency and intensity have showed considerable variability across Europe during the 20th century. Models project an eastward extension of the North Atlantic storm track towards central Europe, with an increase in the number of cyclones in central Europe and a decreased number in the Norwegian and Mediterranean Seas.For medicanes (also termed Mediterranean Sea hurricanes), a decreased frequency but increased intensity of medicanes is projected in the Mediterranean area.Landslides are a natural hazard that cause fatalities and significant economic losses in various parts of Europe. Projected increases in temperature and changes in precipitation patterns will affect rock slope stability conditions and favour increases in the frequency of shallow landslides, especially in European mountains.The severity and frequency of droughts appear to have increased in parts of Europe, in particular in southern and south-eastern Europe. Droughts are projected to increase in frequency, duration, and severity in most of Europe, with the strongest increase projected for southern Europe.Forest fire risk depends on many factors, including climatic conditions, vegetation, forest management practices and other socio-economic factors. The burnt area in the Mediterranean region increased from 1980 to 2000; it has decreased thereafter. Projected increases in heat waves together with an expansion of the fire-prone area will increase the duration of fire seasons across Europe, in particular in southern Europe.Observational data between 1970 and 2015 show that alpine avalanches cause on average 100 fatalities every winter in the Alps. Increased temperatures are expected to lead to decreases in alpine snow cover and duration, and in turnto decreased avalanche activity below about 1 500-2 000 m elevation in spring, but increased avalanche activity above 2 000 m elevation, especially in winter.Hail is responsible for significant damage to crops, vehicles, buildings and other infrastructure. Despite improvements in data availability, trends and projections of hail events are still subject to large uncertainties owing to a lack of directobservation and inadequate microphysical schemes in numerical weather prediction and climate models.Extreme high coastal water levels have increased at most locations along the European coastline. This increase appears to be predominantly due to increases in mean local sea level rather than to changes in storm activity. Projected changes in the frequency and intensity of storm surges are expected to cause significant ecological damage, economic loss and other societal problems along low-lying coastal areas in northern and western Europe, unless additional adaptation measures are implemented
    corecore