798 research outputs found

    Cable Design for FAIR SIS 300

    Get PDF
    GSI, Darmstadt is preparing to build FAIR (Facility for Antiproton and Ion Research) which include SIS 300, a 300T - m fast-ramping heavy ion synchrotron. Dipoles for this ring will be 2.9 m long, producing 6 T over a 100 mm coil aperture and ramped at 1 T/s. The cable for these dipoles must have low losses and produce acceptable field distortions during the fast ramp. We plan to achieve this objective by using fine (~ 3 mum) filaments of NbTi in a wire with an interfilamentary matrix of CuMn to reduce proximity coupling and increase the transverse resistivity. The Rutherford cable have a thin stainless steel core and the wires will be coated with SnAg solder which has been oxidized, using a recipe similar to that developed at CERN, to increase the adjacent strand resistance Ra. Measurements of crossover strand resistance Re and Ra in cored cable with oxidized SnAg coating will be presented, together with data on critical current, persistent current magnetization and eddy current coupling in a wire with ultra fine filaments and a CuMn matrix in the interfilamentary region of the wire. These data will be used to predict losses and field distortion in the SIS 300 dipole and optimize the final design of cable for FAIR

    Prevalence and genetic diversity of endosymbiotic bacteria infecting cassava whiteflies in Africa

    Get PDF
    Background: Cassava provides over half of the dietary requirement for more than 200 million poor in Africa. In recent years, cassava has been affected by an epidemic of a virus disease called cassava brown streak disease (CBSD) that is spreading in much of eastern and central Africa, affecting food security and the economic development of the poor. The viruses that cause CBSD are transmitted by the insect vector whitefly (Bemisia tabaci), which have increased to very high numbers in some African countries. Strains of endosymbiotic bacteria infecting whiteflies have been reported to interact specifically with different whitefly populations with varied effects on its host biology and efficiency of virus transmission. The main aim of this study was therefore to investigate the prevalence and diversity of the secondary endosymbiotic bacteria infecting cassava whiteflies with a view to better understand their role on insect population dynamics and virus disease epidemics. Results: The genetic diversity of field-collected whitefly from Tanzania, Malawi, Uganda and Nigeria was determined by mitochondrial DNA based phylogeny and restriction fragment length polymorphism. Cassava in these countries was infected with five whitefly populations, and each one was infected with different endosymbiotic bacteria. Incidences of Arsenophonus, Rickettsia, Wolbachia and Cardinium varied amongst the populations. Wolbachia was the most predominant symbiont with infection levels varying from 21 to 97%. Infection levels of Arsenophonus varied from 17 to 64% and that of Rickettsia was 0 to 53%. Hamiltonella and Fritschea were absent in all the samples. Multiple locus sequence typing identified four different strains of Wolbachia infecting cassava whiteflies. A common strain of Wolbachia infected the whitefly population Sub-Saharan Africa 1-subgroup 1 (SSA1-SG1) and SSA1-SG2, while others were infected with different strains. Phylogeny based on 16S rDNA of Rickettsia and 23S rDNA of Arsenophonus also identified distinct strains. Conclusions: Genetically diverse bacteria infect cassava whiteflies in Africa with varied prevalence across different host populations, which may affect their whitefly biology. Further studies are required to investigate the role of endosymbionts to better understand the whitefly population dynamics

    Cored Rutherford cables for the GSI fast ramping synchrotron

    Get PDF
    The new heavy ion synchrotron facility proposed by GSI will have two superconducting magnet rings in the same tunnel, with rigidities of 200 T/spl middot/m and 100 T/spl middot/m. Fast ramp times are needed, which can cause significant problems for the magnets, particularly in the areas of ac loss and field distortion. This paper discusses the 200 T/spl middot/m ring, which will use Cos/spl theta/ magnets based on the RHIC dipole design. We discuss the reasons for choosing Rutherford cable with a resistive core and report loss measurements carried out on cable samples. These measurements are compared with theoretical calculations using measured values of inter-strand resistance. Reasonably good agreement is found, but there are indications of nonuniformity in the adjacent resistance R/sub a/. Using these measured parameters, losses and temperature rise are calculated for a RHIC dipole in the operating cycle of the accelerator. A novel insulation scheme designed to promote efficient cooling is described

    Nodal domains of Maass forms I

    Full text link
    This paper deals with some questions that have received a lot of attention since they were raised by Hejhal and Rackner in their 1992 numerical computations of Maass forms. We establish sharp upper and lower bounds for the L2L^2-restrictions of these forms to certain curves on the modular surface. These results, together with the Lindelof Hypothesis and known subconvex LL^\infty-bounds are applied to prove that locally the number of nodal domains of such a form goes to infinity with its eigenvalue.Comment: To appear in GAF

    Stability measurements on cored cables in normal and superfluid helium

    Get PDF
    The relative stability of LHC type cables has been measured by the direct heating of one of the individual strands with a short duration current pulse. The minimum energy required to initiate a quench has been determined for a number of cables which have a central core to increase the effective inter-strand cross-over resistance. Experiments were performed in both normal helium at 4.4 K and superfluid at 1.9 K. Conductors in general are less stable at the lower temperature when measured at the same fraction of critical current. Results show that the cored-cables, even when partially filled with solder or with a porous-metal filler exhibit a relatively low stability at currents close to the critical current. It is speculated that the high inter-strand electrical and thermal resistance inherent in these cables may effect the stability at high currents

    Prevalence of multiple non-communicable diseases risk factors among adolescents in 140 countries:A population-based study

    Get PDF
    BACKGROUND: Modifiable non-communicable disease (NCD) risk factors are becoming increasingly common among adolescents, with clustering of these risk factors in individuals of particular concern. The aim of this study was to assess global status of clustering of common modifiable NCD risk factors among adolescents. METHODS: We used latest available data from nationally representative survey for 140 countries, namely the Global School-based Student Health Survey, the Health Behaviour in School-Aged Children and the longitudinal study of Australian Children. Weighted mean estimates of prevalence with corresponding 95% confidence intervals of nine NCD risk factors - physical inactivity, sedentary behaviour, insufficient fruits and vegetable consumption, carbonated soft drink consumption, fast food consumption, tobacco use, alcohol consumption and overweight/obesity - were calculated by country, region and sex. FINDINGS: Over 487,565 adolescents, aged 11–17 years, were included in this study. According to trend analysis, prevalence of four or more NCD risk factors increased gradually over time. Prevalence of four or more NCD risk factors was 14.8% in 2003–2007 and increased to 44% in 2013–2017, an approximately three-fold increase (44.0%). Similar trends were also observed for three and two risk factors. Large variation between countries in the prevalence of adolescents with four or more risk factors was found in all regions. The country level range was higher in the South-East Asia Region (minimum Sri Lanka = 8%, maximum Myanmar = 84%) than Western Pacific Region (minimum China = 3%, maximum Niue = 72%), European Region (minimum Sweden = 13.9%, maximum Ireland = 66.0%), African Region (minimum Senegal = 0.8%, maximum Uganda = 82.1%) and Eastern Mediterranean Region (minimum Libya = 0.2%, maximum Lebanon = 80.2%). Insufficient vegetable consumption, insufficient fruit consumption and physically inactivity were three of the four most prevalent risk factors in all regions. INTERPRETATION: Our results suggest a high prevalence of four or more NCD risk factors in adolescents globally, although variation was found between countries. Results from our study indicate that efforts to reduce adolescent NCD risk factors and the associated health burden need to be improved. These findings can assist policy makers to target the rollout of country- specific interventions. FUNDING: None

    On the Nature of the Phase Transition in SU(N), Sp(2) and E(7) Yang-Mills theory

    Full text link
    We study the nature of the confinement phase transition in d=3+1 dimensions in various non-abelian gauge theories with the approach put forward in [1]. We compute an order-parameter potential associated with the Polyakov loop from the knowledge of full 2-point correlation functions. For SU(N) with N=3,...,12 and Sp(2) we find a first-order phase transition in agreement with general expectations. Moreover our study suggests that the phase transition in E(7) Yang-Mills theory also is of first order. We find that it is weaker than for SU(N). We show that this can be understood in terms of the eigenvalue distribution of the order parameter potential close to the phase transition.Comment: 15 page

    Theory and phenomenology of two-Higgs-doublet models

    Get PDF
    We discuss theoretical and phenomenological aspects of two-Higgs-doublet extensions of the Standard Model. In general, these extensions have scalar mediated flavour changing neutral currents which are strongly constrained by experiment. Various strategies are discussed to control these flavour changing scalar currents and their phenomenological consequences are analysed. In particular, scenarios with natural flavour conservation are investigated, including the so-called type I and type II models as well as lepton-specific and inert models. Type III models are then discussed, where scalar flavour changing neutral currents are present at tree level, but are suppressed by either specific ansatze for the Yukawa couplings or by the introduction of family symmetries. We also consider the phenomenology of charged scalars in these models. Next we turn to the role of symmetries in the scalar sector. We discuss the six symmetry-constrained scalar potentials and their extension into the fermion sector. The vacuum structure of the scalar potential is analysed, including a study of the vacuum stability conditions on the potential and its renormalization-group improvement. The stability of the tree level minimum of the scalar potential in connection with electric charge conservation and its behaviour under CP is analysed. The question of CP violation is addressed in detail, including the cases of explicit CP violation and spontaneous CP violation. We present a detailed study of weak basis invariants which are odd under CP. A careful study of spontaneous CP violation is presented, including an analysis of the conditions which have to be satisfied in order for a vacuum to violate CP. We present minimal models of CP violation where the vacuum phase is sufficient to generate a complex CKM matrix, which is at present a requirement for any realistic model of spontaneous CP violation.Comment: v3: 180 pages, 506 references, new chapter 7 with recent LHC results; referee comments taken into account; submitted to Physics Report

    Formation of dense partonic matter in relativistic nucleus-nucleus collisions at RHIC: Experimental evaluation by the PHENIX collaboration

    Full text link
    Extensive experimental data from high-energy nucleus-nucleus collisions were recorded using the PHENIX detector at the Relativistic Heavy Ion Collider (RHIC). The comprehensive set of measurements from the first three years of RHIC operation includes charged particle multiplicities, transverse energy, yield ratios and spectra of identified hadrons in a wide range of transverse momenta (p_T), elliptic flow, two-particle correlations, non-statistical fluctuations, and suppression of particle production at high p_T. The results are examined with an emphasis on implications for the formation of a new state of dense matter. We find that the state of matter created at RHIC cannot be described in terms of ordinary color neutral hadrons.Comment: 510 authors, 127 pages text, 56 figures, 1 tables, LaTeX. Submitted to Nuclear Physics A as a regular article; v3 has minor changes in response to referee comments. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm
    corecore