115 research outputs found

    About Gravitomagnetism

    Full text link
    The gravitomagnetic field is the force exerted by a moving body on the basis of the intriguing interplay between geometry and dynamics which is the analog to the magnetic field of a moving charged body in electromagnetism. The existence of such a field has been demonstrated based on special relativity approach and also by special relativity plus the gravitational time dilation for two different cases, a moving infinite line and a uniformly moving point mass, respectively. We treat these two approaches when the applied cases are switched while appropriate key points are employed. Thus, we demonstrate that the strength of the resulted gravitomagnetic field in the latter approach is twice the former. Then, we also discuss the full linearized general relativity and show that it should give the same strength for gravitomagnetic field as the latter approach. Hence, through an exact analogy with the electrodynamic equations, we present an argument in order to indicate the best definition amongst those considered in this issue in the literature. Finally, we investigate the gravitomagnetic effects and consequences of different definitions on the geodesic equation including the second order approximation terms.Comment: 16 pages, a few amendments have been performed and a new section has been adde

    Quantum mechanics and geodesic deviation in the brane world

    Full text link
    We investigate the induced geodesic deviation equations in the brane world models, in which all the matter forces except gravity are confined on the 3-brane. Also, the Newtonian limit of induced geodesic deviation equation is studied. We show that in the first Randall-Sundrum model the Bohr-Sommerfeld quantization rule is as a result of consistency between the geodesic and geodesic deviation equations. This indicates that the path of test particle is made up of integral multiples of a fundamental Compton-type unit of length h/mch/mc.Comment: 5 pages, no figure

    On Higher Order Gravities, Their Analogy to GR, and Dimensional Dependent Version of Duff's Trace Anomaly Relation

    Full text link
    An almost brief, though lengthy, review introduction about the long history of higher order gravities and their applications, as employed in the literature, is provided. We review the analogous procedure between higher order gravities and GR, as described in our previous works, in order to highlight its important achievements. Amongst which are presentation of an easy classification of higher order Lagrangians and its employment as a \emph{criteria} in order to distinguish correct metric theories of gravity. For example, it does not permit the inclusion of only one of the second order Lagrangians in \emph{isolation}. But, it does allow the inclusion of the cosmological term. We also discuss on the compatibility of our procedure and the Mach idea. We derive a dimensional dependent version of Duff's trace anomaly relation, which in \emph{four}-dimension is the same as the usual Duff relation. The Lanczos Lagrangian satisfies this new constraint in \emph{any} dimension. The square of the Weyl tensor identically satisfies it independent of dimension, however, this Lagrangian satisfies the previous relation only in three and four dimensions.Comment: 30 pages, added reference

    FRW Cosmology From Five Dimensional Vacuum Brans-Dicke Theory

    Full text link
    We follow approach of induced matter theory for 5D vacuum BD, introduce induced matter and potential in 4D hypersurfaces, and employ generalized FRW type solution. We confine ourselves to scalar field and scale factors be functions of the time. This makes the induced potential, by its definition, vanishes. When the scale factor of fifth dimension and scalar field are not constants, 5D eqs for any geometry admit a power law relation between scalar field and scale factor of fifth dimension. Hence the procedure exhibits that 5D vacuum FRW like eqs are equivalent, in general, to corresponding 4D vacuum ones with the same spatial scale factor but new scalar field and coupling constant. We show that 5D vacuum FRW like eqs or its equivalent 4D vacuum ones admit accelerated solutions. For constant scalar field, eqs reduce to usual FRW eqs with typical radiation dominated universe. For this situation we obtain dynamics of scale factors for any geometry without any priori assumption. For nonconstant scalar fields and spatially flat geometries, solutions are found to be power law and exponential ones. We also employ weak energy condition for induced matter, that allows negative/positive pressures. All types of solutions fulfill WEC in different ranges. The power law solutions with negative/positive pressures admit both decelerating and accelerating ones. Some solutions accept shrinking extra dimension. By considering nonghost scalar fields and recent observational measurements, solutions are more restricted. We illustrate that accelerating power law solutions, which satisfy WEC and have nonghost fields, are compatible with recent observations in ranges -4/3 < \omega </- -1.3151 and 1.5208 </- n < 1.9583 for dependence of fifth dimension scale factor with usual scale factor. These ranges also fulfill condition nonghost fields in the equivalent 4D vacuum BD eqs.Comment: 18 pages, 16 figures, 11 table

    Chameleonic Generalized Brans--Dicke model and late-time acceleration

    Full text link
    In this paper we consider Chameleonic Generalized Brans--Dicke Cosmology in the framework of FRW universes. The bouncing solution and phantom crossing is investigated for the model. Two independent cosmological tests: Cosmological Redshift Drift (CRD) and distance modulus are applied to test the model with the observation.Comment: 20 pages, 15 figures, to be published in Astrophys. Space Sci. (2011

    Zitterbewegung in External Magnetic Field: Classic versus Quantum Approach

    Full text link
    We investigate variations of the Zitterbewegung frequency of electron due to an external static and uniform magnetic field employing the expectation value quantum approach, and compare our results with the classical model of spinning particles. We demonstrate that these two so far compatible approaches are not in agreement in the presence of an external uniform static magnetic field, in which the classical approach breaks the usual symmetry of free particles and antiparticles states, i.e. it leads to CP violation. Hence, regarding the Zitterbewegung frequency of electron, the classical approach in the presence of an external magnetic field is unlikely to correctly describe the spin of electron, while the quantum approach does, as expected. We also show that the results obtained via the expectation value are in close agreement with the quantum approach of the Heisenberg picture derived in the literature. However, the method we use is capable of being compared with the classical approach regarding the spin aspects. The classical interpretation of spin produced by the altered Zitterbewegung frequency, in the presence of an external magnetic field, are discussed.Comment: 16 pages, no figure

    Relatively higher norms of blood flow velocity of major intracranial arteries in North-West Iran

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Transcranial Doppler (TCD) is a noninvasive, less expensive and harmless hemodynamic study of main intracranial arteries. The aim of this study was to assess normal population values of cerebral blood flow velocity and its variation over age and gender in a given population.</p> <p>Findings</p> <p>Eighty healthy volunteers including 40 people with an age range of 25-40 years (group1) and 40 persons with an age range of 41-55 years (group2) were studied. In each group 20 males and 20 females were enrolled. Peak systolic, end diastolic and mean velocities of nine main intracranial arteries were determined using TCD. Mean age of the studied volunteers was 31.6 ± 4.50 years in group one and 47.2 ± 4.3 years in group two. Mean age among males was 40 years and among females it was 39. Mean blood flow velocity in middle, anterior and posterior cerebral arteries, vertebral and basilar arteries was 60 ± 8, 52 ± 9, 42 ± 6, 39 ± 8 and 48 ± 8 cm/sec respectively. Cerebral blood flow velocities among females were relatively higher than males. Cerebral blood flow velocity of left side was relatively higher than right side.</p> <p>Conclusion</p> <p>Compared to previous studies, cerebral blood flow velocity in this population was relatively higher.</p

    Modified Gravity and Cosmology

    Get PDF
    In this review we present a thoroughly comprehensive survey of recent work on modified theories of gravity and their cosmological consequences. Amongst other things, we cover General Relativity, Scalar-Tensor, Einstein-Aether, and Bimetric theories, as well as TeVeS, f(R), general higher-order theories, Horava-Lifschitz gravity, Galileons, Ghost Condensates, and models of extra dimensions including Kaluza-Klein, Randall-Sundrum, DGP, and higher co-dimension braneworlds. We also review attempts to construct a Parameterised Post-Friedmannian formalism, that can be used to constrain deviations from General Relativity in cosmology, and that is suitable for comparison with data on the largest scales. These subjects have been intensively studied over the past decade, largely motivated by rapid progress in the field of observational cosmology that now allows, for the first time, precision tests of fundamental physics on the scale of the observable Universe. The purpose of this review is to provide a reference tool for researchers and students in cosmology and gravitational physics, as well as a self-contained, comprehensive and up-to-date introduction to the subject as a whole.Comment: 312 pages, 15 figure

    New varying speed of light theories

    Full text link
    We review recent work on the possibility of a varying speed of light (VSL). We start by discussing the physical meaning of a varying cc, dispelling the myth that the constancy of cc is a matter of logical consistency. We then summarize the main VSL mechanisms proposed so far: hard breaking of Lorentz invariance; bimetric theories (where the speeds of gravity and light are not the same); locally Lorentz invariant VSL theories; theories exhibiting a color dependent speed of light; varying cc induced by extra dimensions (e.g. in the brane-world scenario); and field theories where VSL results from vacuum polarization or CPT violation. We show how VSL scenarios may solve the cosmological problems usually tackled by inflation, and also how they may produce a scale-invariant spectrum of Gaussian fluctuations, capable of explaining the WMAP data. We then review the connection between VSL and theories of quantum gravity, showing how ``doubly special'' relativity has emerged as a VSL effective model of quantum space-time, with observational implications for ultra high energy cosmic rays and gamma ray bursts. Some recent work on the physics of ``black'' holes and other compact objects in VSL theories is also described, highlighting phenomena associated with spatial (as opposed to temporal) variations in cc. Finally we describe the observational status of the theory. The evidence is currently slim -- redshift dependence in the atomic fine structure, anomalies with ultra high energy cosmic rays, and (to a much lesser extent) the acceleration of the universe and the WMAP data. The constraints (e.g. those arising from nucleosynthesis or geological bounds) are tight, but not insurmountable. We conclude with the observational predictions of the theory, and the prospects for its refutation or vindication.Comment: Final versio

    COPPADIS-2015 (COhort of Patients with PArkinson's DIsease in Spain, 2015), a global--clinical evaluations, serum biomarkers, genetic studies and neuroimaging--prospective, multicenter, non-interventional, long-term study on Parkinson's disease progressio

    Get PDF
    Background: Parkinson?s disease (PD) is a progressive neurodegenerative disorder causing motor and non-motor symptoms that can affect independence, social adjustment and the quality of life (QoL) of both patients and caregivers. Studies designed to find diagnostic and/or progression biomarkers of PD are needed. We describe here the study protocol of COPPADIS-2015 (COhort of Patients with PArkinson?s DIsease in Spain, 2015), an integral PD project based on four aspects/concepts: 1) PD as a global disease (motor and non-motor symptoms); 2) QoL and caregiver issues; 3) Biomarkers; 4) Disease progression.Methods/design: Observational, descriptive, non-interventional, 5-year follow-up, national (Spain), multicenter (45 centers from 15 autonomous communities), evaluation study. Specific goals: (1) detailed study (clinical evaluations, serum biomarkers, genetic studies and neuroimaging) of a population of PD patients from different areas of Spain, (2) comparison with a control group and (3) follow-up for 5 years. COPPADIS-2015 has been specifically designed to assess 17 proposed objectives. Study population: approximately 800 non-dementia PD patients, 600 principal caregivers and 400 control subjects. Study evaluations: (1) baseline includes motor assessment (e.g., Unified Parkinson?s Disease Rating Scale part III), non-motor symptoms (e.g., Non-Motor Symptoms Scale), cognition (e.g., Parkinson?s Disease Cognitive Rating Scale), mood and neuropsychiatric symptoms (e.g., Neuropsychiatric Inventory), disability, QoL (e.g., 39-item Parkinson?s disease Quality of Life Questionnaire Summary-Index) and caregiver status (e.g., Zarit Caregiver Burden Inventory); (2) follow-up includes annual (patients) or biannual (caregivers and controls) evaluations. Serum biomarkers (S-100b protein, TNF-?, IL-1, IL-2, IL-6, vitamin B12, methylmalonic acid, homocysteine, uric acid, C-reactive protein, ferritin, iron) and brain MRI (volumetry, tractography and MTAi [Medial Temporal Atrophy Index]), at baseline and at the end of follow-up, and genetic studies (DNA and RNA) at baseline will be performed in a subgroup of subjects (300 PD patients and 100 control subjects). Study periods: (1) recruitment period, from November, 2015 to February, 2017 (basal assessment); (2) follow-up period, 5 years; (3) closing date of clinical follow-up, May, 2022. Funding: Public/Private. Discussion: COPPADIS-2015 is a challenging initiative. This project will provide important information on the natural history of PD and the value of various biomarkers
    corecore