3,835 research outputs found

    Quantum dynamics in strong fluctuating fields

    Full text link
    A large number of multifaceted quantum transport processes in molecular systems and physical nanosystems can be treated in terms of quantum relaxation processes which couple to one or several fluctuating environments. A thermal equilibrium environment can conveniently be modelled by a thermal bath of harmonic oscillators. An archetype situation provides a two-state dissipative quantum dynamics, commonly known under the label of a spin-boson dynamics. An interesting and nontrivial physical situation emerges, however, when the quantum dynamics evolves far away from thermal equilibrium. This occurs, for example, when a charge transferring medium possesses nonequilibrium degrees of freedom, or when a strong time-dependent control field is applied externally. Accordingly, certain parameters of underlying quantum subsystem acquire stochastic character. Herein, we review the general theoretical framework which is based on the method of projector operators, yielding the quantum master equations for systems that are exposed to strong external fields. This allows one to investigate on a common basis the influence of nonequilibrium fluctuations and periodic electrical fields on quantum transport processes. Most importantly, such strong fluctuating fields induce a whole variety of nonlinear and nonequilibrium phenomena. A characteristic feature of such dynamics is the absence of thermal (quantum) detailed balance.Comment: review article, Advances in Physics (2005), in pres

    Genotypic classification of patients with Wolfram syndrome: insights into the natural history of the disease and correlation with phenotype

    Get PDF
    Purpose: Wolfram syndrome is a degenerative, recessive rare disease with an onset in childhood. It is caused by mutations in WFS1 or CISD2 genes. More than 200 different variations in WFS1 have been described in patients with Wolfram syndrome, which complicates the establishment of clear genotype-phenotype correlation. The purpose of this study was to elucidate the role of WFS1 mutations and update the natural history of the disease. Methods: This study analyzed clinical and genetic data of 412 patients with Wolfram syndrome published in the last 15 years. Results: (i) 15% of published patients do not fulfill the current ­inclusion criterion; (ii) genotypic prevalence differences may exist among countries; (iii) diabetes mellitus and optic atrophy might not be the first two clinical features in some patients; (iv) mutations are nonuniformly distributed in WFS1; (v) age at onset of diabetes mellitus, hearing defects, and diabetes insipidus may depend on the patient"s genotypic class; and (vi) disease progression rate might depend on genotypic class. Conclusion: New genotype-phenotype correlations were established, disease progression rate for the general population and for the genotypic classes has been calculated, and new diagnostic criteria have been proposed. The conclusions raised could be important for patient management and counseling as well as for the development of treatments for Wolfram syndrome

    Observation of associated near-side and away-side long-range correlations in √sNN=5.02  TeV proton-lead collisions with the ATLAS detector

    Get PDF
    Two-particle correlations in relative azimuthal angle (Δϕ) and pseudorapidity (Δη) are measured in √sNN=5.02  TeV p+Pb collisions using the ATLAS detector at the LHC. The measurements are performed using approximately 1  μb-1 of data as a function of transverse momentum (pT) and the transverse energy (ΣETPb) summed over 3.1<η<4.9 in the direction of the Pb beam. The correlation function, constructed from charged particles, exhibits a long-range (2<|Δη|<5) “near-side” (Δϕ∼0) correlation that grows rapidly with increasing ΣETPb. A long-range “away-side” (Δϕ∼π) correlation, obtained by subtracting the expected contributions from recoiling dijets and other sources estimated using events with small ΣETPb, is found to match the near-side correlation in magnitude, shape (in Δη and Δϕ) and ΣETPb dependence. The resultant Δϕ correlation is approximately symmetric about π/2, and is consistent with a dominant cos⁡2Δϕ modulation for all ΣETPb ranges and particle pT

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector

    Get PDF
    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente

    What Goes in Must Come out: Testing for Biases in Molecular Analysis of Arbuscular Mycorrhizal Fungal Communities

    Get PDF
    Arbuscular mycorrhizal (AM) fungi are widely distributed microbes that form obligate symbioses with the majority of terrestrial plants, altering nutrient transfers between soils and plants, thereby profoundly affecting plant growth and ecosystem properties. Molecular methods are commonly used in the study of AM fungal communities. However, the biases associated with PCR amplification of these organisms and their ability to be utilized quantitatively has never been fully tested. We used Terminal Restriction Fragment Length Polymorphism (TRFLP) analysis to characterise artificial community templates containing known quantities of defined AM fungal genotypes. This was compared to a parallel in silico analysis that predicted the results of this experiment in the absence of bias. The data suggest that when used quantitatively the TRFLP protocol tested is a powerful, repeatable method for AM fungal community analysis. However, we suggest some limitations to its use for population-level analyses. We found no evidence of PCR bias, supporting the quantitative use of other PCR-based methods for the study of AM fungi such as next generation amplicon sequencing. This finding greatly improves our confidence in methods that quantitatively examine AM fungal communities, providing a greater understanding of the ecology of these important fungi

    Performance of CMS muon reconstruction in pp collision events at sqrt(s) = 7 TeV

    Get PDF
    The performance of muon reconstruction, identification, and triggering in CMS has been studied using 40 inverse picobarns of data collected in pp collisions at sqrt(s) = 7 TeV at the LHC in 2010. A few benchmark sets of selection criteria covering a wide range of physics analysis needs have been examined. For all considered selections, the efficiency to reconstruct and identify a muon with a transverse momentum pT larger than a few GeV is above 95% over the whole region of pseudorapidity covered by the CMS muon system, abs(eta) < 2.4, while the probability to misidentify a hadron as a muon is well below 1%. The efficiency to trigger on single muons with pT above a few GeV is higher than 90% over the full eta range, and typically substantially better. The overall momentum scale is measured to a precision of 0.2% with muons from Z decays. The transverse momentum resolution varies from 1% to 6% depending on pseudorapidity for muons with pT below 100 GeV and, using cosmic rays, it is shown to be better than 10% in the central region up to pT = 1 TeV. Observed distributions of all quantities are well reproduced by the Monte Carlo simulation.Comment: Replaced with published version. Added journal reference and DO

    Identification of the Microsporidian Encephalitozoon cuniculi as a New Target of the IFNγ-Inducible IRG Resistance System

    Get PDF
    The IRG system of IFNγ-inducible GTPases constitutes a powerful resistance mechanism in mice against Toxoplasma gondii and two Chlamydia strains but not against many other bacteria and protozoa. Why only T. gondii and Chlamydia? We hypothesized that unusual features of the entry mechanisms and intracellular replicative niches of these two organisms, neither of which resembles a phagosome, might hint at a common principle. We examined another unicellular parasitic organism of mammals, member of an early-diverging group of Fungi, that bypasses the phagocytic mechanism when it enters the host cell: the microsporidian Encephalitozoon cuniculi. Consistent with the known susceptibility of IFNγ-deficient mice to E. cuniculi infection, we found that IFNγ treatment suppresses meront development and spore formation in mouse fibroblasts in vitro, and that this effect is mediated by IRG proteins. The process resembles that previously described in T. gondii and Chlamydia resistance. Effector (GKS subfamily) IRG proteins accumulate at the parasitophorous vacuole of E. cuniculi and the meronts are eliminated. The suppression of E. cuniculi growth by IFNγ is completely reversed in cells lacking regulatory (GMS subfamily) IRG proteins, cells that effectively lack all IRG function. In addition IFNγ-induced cells infected with E. cuniculi die by necrosis as previously shown for IFNγ-induced cells resisting T. gondii infection. Thus the IRG resistance system provides cell-autonomous immunity to specific parasites from three kingdoms of life: protozoa, bacteria and fungi. The phylogenetic divergence of the three organisms whose vacuoles are now known to be involved in IRG-mediated immunity and the non-phagosomal character of the vacuoles themselves strongly suggests that the IRG system is triggered not by the presence of specific parasite components but rather by absence of specific host components on the vacuolar membrane.Grants from the Deutsche Forschungsgemeinschaft: SFB635, 670, 680, SPP1399

    Performance of CMS muon reconstruction in pp collision events at sqrt(s) = 7 TeV

    Get PDF
    The performance of muon reconstruction, identification, and triggering in CMS has been studied using 40 inverse picobarns of data collected in pp collisions at sqrt(s) = 7 TeV at the LHC in 2010. A few benchmark sets of selection criteria covering a wide range of physics analysis needs have been examined. For all considered selections, the efficiency to reconstruct and identify a muon with a transverse momentum pT larger than a few GeV is above 95% over the whole region of pseudorapidity covered by the CMS muon system, abs(eta) < 2.4, while the probability to misidentify a hadron as a muon is well below 1%. The efficiency to trigger on single muons with pT above a few GeV is higher than 90% over the full eta range, and typically substantially better. The overall momentum scale is measured to a precision of 0.2% with muons from Z decays. The transverse momentum resolution varies from 1% to 6% depending on pseudorapidity for muons with pT below 100 GeV and, using cosmic rays, it is shown to be better than 10% in the central region up to pT = 1 TeV. Observed distributions of all quantities are well reproduced by the Monte Carlo simulation.Comment: Replaced with published version. Added journal reference and DO

    Anaphylaxis in an emergency department: a retrospective 10-year study in a tertiary hospital

    Get PDF
    Background. Anaphylaxis is a potentially fatal medical emergency. The frequency of hospital admissions for anaphylaxis seems to be increasing in the recent decades. Objective. Characterize the patients admitted for anaphylaxis to the adult emergency department (ED) of a tertiary care hospital over a 10-year period, discriminating aetiologies, clinical features and therapy administered. Methods. Retrospective, descriptive and inferential study, evaluating age, sex, Manchester triage system, suspected allergen, site of allergen exposure, comorbidities, cofactors, clinical findings and symptoms, treatment and management. Patients admitted between January 2007 and December 2016 were included. Results. Forty-three patients were enrolled: 23 males, mean age 54.3 ± 16.2 years, n = 22 had history of allergic disease. Two patients were triaged as non-urgent. The most frequently suspected causes of anaphylaxis were: drugs (33%, n = 14), Hymenoptera venoms (23%, n = 10), foods (21%, n = 9) and iodinated contrast products (12%, n = 5). Adrenaline was used in 88% of the episodes (n = 38), 55% of which (n = 21) intramuscularly. Mortality was registered in one case. At discharge, adrenaline auto-injector was prescribed in 7% (n = 3) of the patients, and Allergy and Clinical Immunology consultation (ACIC) was requested in 65% of the episodes (n = 28). Statistically significant associations (p minor 0.05) were established: a, anaphylaxis to drugs associated with a low intramuscular adrenaline use and with frequent oxygen therapy; b, anaphylaxis to food associated with intramuscular adrenaline administration; c, anaphylaxis to Hymenoptera venom associated with male sex; and d, anaphylaxis to iodinated contrasts associated with referral to ACIC and with shock. All obese patients developed shock. Conclusions. Anaphylaxis is a life-threatening condition that requires early recognition. Although most patients received adrenaline, administration was not always performed by the recommended route and only a few patients were prescribed adrenaline auto-injector.info:eu-repo/semantics/publishedVersio

    The restorative role of annexin A1 at the blood–brain barrier

    Get PDF
    Annexin A1 is a potent anti-inflammatory molecule that has been extensively studied in the peripheral immune system, but has not as yet been exploited as a therapeutic target/agent. In the last decade, we have undertaken the study of this molecule in the central nervous system (CNS), focusing particularly on the primary interface between the peripheral body and CNS: the blood–brain barrier. In this review, we provide an overview of the role of this molecule in the brain, with a particular emphasis on its functions in the endothelium of the blood–brain barrier, and the protective actions the molecule may exert in neuroinflammatory, neurovascular and metabolic disease. We focus on the possible new therapeutic avenues opened up by an increased understanding of the role of annexin A1 in the CNS vasculature, and its potential for repairing blood–brain barrier damage in disease and aging
    corecore