37 research outputs found
Recommended from our members
Using deuterated PAH amendments to validate chemical extraction methods to predict PAH bioavailability in soils
Validating chemical methods to predict bioavailable fractions of polycyclic aromatic hydrocarbons (PAHs) by comparison with accumulation bioassays is problematic. Concentrations accumulated in soil organisms not only depend on the bioavailable fraction but also on contaminant properties. A historically contaminated soil was freshly spiked with deuterated PAHs (dPAHs). dPAHs have a similar fate to their respective undeuterated analogues, so chemical methods that give good indications of bioavailability should extract the fresh more readily available dPAHs and historic more recalcitrant PAHs in similar proportions to those in which they are accumulated in the tissues of test organisms. Cyclodextrin and butanol extractions predicted the bioavailable fraction for earthworms (Eisenia fetida) and plants (Lolium multiflorum) better than the exhaustive extraction. The PAHs accumulated by earthworms had a larger dPAH:PAH ratio than that predicted by chemical methods. The isotope ratio method described here provides an effective way of evaluating other chemical methods to predict bioavailability
Recommended from our members
Relative proportions of polycyclic aromatic hydrocarbons differ between accumulation bioassays and chemical methods to predict bioavailability
Chemical methods to predict the bioavailable fraction of organic contaminants are usually validated in the literature by comparison with established bioassays. A soil spiked with polycyclic aromatic hydrocarbons (PAHs) was aged over six months and subjected to butanol, cyclodextrin and tenax extractions as well as an exhaustive extraction to determine total PAH concentrations at several time points. Earthworm (Eisenia fetida) and rye grass root (Lolium multiflorum) accumulation bioassays were conducted in parallel. Butanol extractions gave the best relationship with earthworm accumulation (r2 ≤ 0.54, p ≤ 0.01); cyclodextrin, butanol and acetone–hexane extractions all gave good predictions of accumulation in rye grass roots (r2 ≤ 0.86, p ≤ 0.01). However, the profile of the PAHs extracted by the different chemical methods was significantly different (p < 0.01) to that accumulated in the organisms. Biota accumulated a higher proportion of the heavier 4-ringed PAHs. It is concluded that bioaccumulation is a complex process that cannot be predicted by measuring the bioavailable fraction alone.
The ability of chemical methods to predict PAH accumulation in Eisenia fetida and Lolium multiflorum was hindered by the varied metabolic fate of the different PAHs within the organisms
Vitamin D in the general population of young adults with autism in the Faroe Islands
Vitamin D deficiency has been proposed as a possible risk factor for developing autism spectrum disorder (ASD). 25-Hydroxyvitamin D3 (25(OH)D3) levels were examined in a cross-sectional population-based study in the Faroe Islands. The case group consisting of a total population cohort of 40 individuals with ASD (aged 15–24 years) had significantly lower 25(OH)D3 than their 62 typically-developing siblings and their 77 parents, and also significantly lower than 40 healthy age and gender matched comparisons. There was a trend for males having lower 25(OH)D3 than females. Effects of age, month/season of birth, IQ, various subcategories of ASD and Autism Diagnostic Observation Schedule score were also investigated, however, no association was found. The very low 25(OH)D3 in the ASD group suggests some underlying pathogenic mechanism
First 10 Months of TGF Observations by ASIM
The Atmosphere‐Space Interactions Monitor (ASIM) was launched to the International Space Station on 2 April 2018. The ASIM payload consists of two main instruments, the Modular X‐ray and Gamma‐ray Sensor (MXGS) for imaging and spectral analysis of Terrestrial Gamma‐ray Flashes (TGFs) and the Modular Multi‐spectral Imaging Array for detection, imaging, and spectral analysis of Transient Luminous Events and lightning. ASIM is the first space mission designed for simultaneous observations of Transient Luminous Events, TGFs, and optical lightning. During the first 10 months of operation (2 June 2018 to 1 April 2019) the MXGS has observed 217 TGFs. In this paper we report several unprecedented measurements and new scientific results obtained by ASIM during this period: (1) simultaneous TGF observations by Fermi Gamma‐ray Burst Monitor and ASIM MXGS revealing the very good detection capability of ASIM MXGS and showing substructures in the TGF, (2) TGFs and Elves produced during the same lightning flash and even simultaneously have been observed, (3) first imaging of TGFs giving a unique source location, (4) strong statistical support for TGFs being produced during the upward propagation of a leader just before a large current pulse heats up the channel and emits a strong optical pulse, and (5) the t 50 duration of TGFs observed from space is shorter than previously reported.publishedVersio
Modelling the Impact of Artemisinin Combination Therapy and Long-Acting Treatments on Malaria Transmission Intensity
Lucy Okell and colleagues predict the impact on transmission outcomes of ACT as first-line treatment for uncomplicated malaria in six areas of varying transmission intensity in Tanzania
Ross, Macdonald, and a Theory for the Dynamics and Control of Mosquito-Transmitted Pathogens
Ronald Ross and George Macdonald are credited with developing a mathematical model of mosquito-borne pathogen transmission. A systematic historical review suggests that several mathematicians and scientists contributed to development of the Ross-Macdonald model over a period of 70 years. Ross developed two different mathematical models, Macdonald a third, and various “Ross-Macdonald” mathematical models exist. Ross-Macdonald models are best defined by a consensus set of assumptions. The mathematical model is just one part of a theory for the dynamics and control of mosquito-transmitted pathogens that also includes epidemiological and entomological concepts and metrics for measuring transmission. All the basic elements of the theory had fallen into place by the end of the Global Malaria Eradication Programme (GMEP, 1955–1969) with the concept of vectorial capacity, methods for measuring key components of transmission by mosquitoes, and a quantitative theory of vector control. The Ross-Macdonald theory has since played a central role in development of research on mosquito-borne pathogen transmission and the development of strategies for mosquito-borne disease prevention
Trace elements at the intersection of marine biological and geochemical evolution
Life requires a wide variety of bioessential trace elements to act as structural components and reactive centers in metalloenzymes. These requirements differ between organisms and have evolved over geological time, likely guided in some part by environmental conditions. Until recently, most of what was understood regarding trace element concentrations in the Precambrian oceans was inferred by extrapolation, geochemical modeling, and/or genomic studies. However, in the past decade, the increasing availability of trace element and isotopic data for sedimentary rocks of all ages has yielded new, and potentially more direct, insights into secular changes in seawater composition – and ultimately the evolution of the marine biosphere. Compiled records of many bioessential trace elements (including Ni, Mo, P, Zn, Co, Cr, Se, and I) provide new insight into how trace element abundance in Earth's ancient oceans may have been linked to biological evolution. Several of these trace elements display redox-sensitive behavior, while others are redox-sensitive but not bioessential (e.g., Cr, U). Their temporal trends in sedimentary archives provide useful constraints on changes in atmosphere-ocean redox conditions that are linked to biological evolution, for example, the activity of oxygen-producing, photosynthetic cyanobacteria. In this review, we summarize available Precambrian trace element proxy data, and discuss how temporal trends in the seawater concentrations of specific trace elements may be linked to the evolution of both simple and complex life. We also examine several biologically relevant and/or redox-sensitive trace elements that have yet to be fully examined in the sedimentary rock record (e.g., Cu, Cd, W) and suggest several directions for future studies
CANDELS: The Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey
The Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS)
is designed to document the first third of galactic evolution, over the
approximate redshift (z) range 8--1.5. It will image >250,000 distant galaxies
using three separate cameras on the Hubble Space Telescope, from the
mid-ultraviolet to the near-infrared, and will find and measure Type Ia
supernovae at z>1.5 to test their accuracy as standardizable candles for
cosmology. Five premier multi-wavelength sky regions are selected, each with
extensive ancillary data. The use of five widely separated fields mitigates
cosmic variance and yields statistically robust and complete samples of
galaxies down to a stellar mass of 10^9 M_\odot to z \approx 2, reaching the
knee of the ultraviolet luminosity function (UVLF) of galaxies to z \approx 8.
The survey covers approximately 800 arcmin^2 and is divided into two parts. The
CANDELS/Deep survey (5\sigma\ point-source limit H=27.7 mag) covers \sim 125
arcmin^2 within GOODS-N and GOODS-S. The CANDELS/Wide survey includes GOODS and
three additional fields (EGS, COSMOS, and UDS) and covers the full area to a
5\sigma\ point-source limit of H \gtrsim 27.0 mag. Together with the Hubble
Ultra Deep Fields, the strategy creates a three-tiered "wedding cake" approach
that has proven efficient for extragalactic surveys. Data from the survey are
nonproprietary and are useful for a wide variety of science investigations. In
this paper, we describe the basic motivations for the survey, the CANDELS team
science goals and the resulting observational requirements, the field selection
and geometry, and the observing design. The Hubble data processing and products
are described in a companion paper.Comment: Submitted to Astrophysical Journal Supplement Series; Revised
version, subsequent to referee repor