1,616 research outputs found

    Interaction between the Intergalactic Medium and Galactic Outflows from Dwarf Galaxies

    Full text link
    We have carried out 2D hydrodynamical simulations in order to study the interaction between supernova-powered gas outflows from low-mass galaxies and the local intergalactic medium (IGM). We are specifically interested in investigating whether a high pressure IGM, such as that in clusters of galaxies, can prevent the gas from escaping from the galaxy. The interface between the outflow and ambient IGM is demarcated by a dense expanding shell formed by the gas swept-up by the outflow. A sufficiently high IGM pressure can bring the shell to a halt well before it escapes the galaxy. Galaxies in such high pressure environments are, however, to be ploughing through the IGM at relatively high velocities. Hence, they will also be subject to ram pressure, which acts to strip the gas from the galaxy. We have carried out simulations that take into account the combined impact of ram pressure and thermal pressure. We find that ram pressure deforms the shell into a tail-like structure, fragments it into dense clouds and eventually drags the clouds away from the galaxy. The clouds are potential sites of star formation and if viewed during this transient phase, the galaxy will appear to have a low-surface brightness tail much like the galaxies with diffuse comet-like tail seen in z=1.15 cluster 3C324. In contrast, the relatively unhindered outflows in low density, low temperature environments can drive the shells of swept-up gas out to large distances from the galaxy. Such shells, if they intersect a quasar line-of-sight, would give rise to Ly α\alpha absorption lines of the kind seen in quasar spectra.Comment: 32 pages, 6 encapsulated Postscript figures, 7 gif figures. Accepted for publication in MNRA

    Gravitational Lensing in Clusters of Galaxies: New Clues Regarding the Dynamics of Intracluster Gas

    Full text link
    Long arcs in clusters of galaxies, produced by gravitational lensing, can be used to estimate the mass interior to the arcs and therefore, constrain the cluster mass distribution. The radial density distribution of the intracluster gas (ICM) can be extracted from the X-ray surface brightness observations. If the gas temperature is also known, it is then possible to probe the dynamical state of the gas and test whether the ICM is in hydro- static equilibrium within the gravitational potential of the cluster as a result of thermal pressure support. We analyze three clusters that exhibit large arcs, whose X-ray surface brightness profiles have been observed, and whose gas temperatures have been determined. In two of the clusters, A2218 and A1689, the central mass implied by lensing is a factor of 22--2.52.5 too large for the gas at the observed temperature to be in hydrostatic equilibrium solely due to thermal pressure support. In other words, if we accept the mass estimate derived from the lensing analysis and demand that the X-ray surface brightness profile be consistent with the observations, the required gas temperature is a factor of 22--2.52.5 higher than observed. The results for the third cluster, A2163 (the most luminous and the hottest cluster known), are more ambiguous. The discrepancy between the X-ray and the lensing mass estimates arise because the presence of arcs imply a highly concentrated cluster mass distribution whereas the observed X-ray profiles imply a more extended mass distribution. The large X-ray core radii are not the result of the limited resolution of the X-ray detectors. We consider various possibilities that could account for the discrepancy.Comment: 20 pages, uuencoded compressed postscript, CITA/93/3

    Studies of hydrogen bonding in complex cations

    Get PDF
    Imperial Users onl

    Suppressing cluster cooling flows by self-regulated heating from spatially distributed population of AGNs

    Full text link
    (Abridged) Existing models invoking AGN activty to resolve the cooling flow conundrum in galaxy clusters focus exclusively on the role of the central galaxy. Such models require fine-tuning of highly uncertain microscopic transport properties to distribute the thermal thermal over the entire cluster cooling core. We propose that the ICM is instead heated by multiple, spatially distributed AGNs. There is mounting observational evidence for multiple AGNs in cluster environments. Active AGNs drive bubbles into the ICM. We identify three distinct interactions between the bubble and the ICM: (1) Upon injection, the bubbles expand rapidly in situ to reach pressure equilibrium with their surroundings, generating shocks and waves whose dissipation is the principal source of ICM heating. (2) Once inflated, the bubbles rise buoyantly at rate determined by a balance with the viscous drag force, which itself results in some additional heating. (3) Rising bubbles expand and compress their surroundings. This process is adiabatic and does not contribute to any additional heating; rather, the increased ICM density due to compression enhances cooling. Our model sidesteps the ``transport'' issue by relying on the spatially distributed galaxies to heat the cluster core. We include self regulation in our model by linking AGN activity in a galaxy to cooling characteristics of the surrounding ICM. We use a spherically symmetric one-dimensional hydrodynamical code to carry out a preliminary study illustrating the efficacy of the model. Our self-regulating scenario predicts that there should be enhanced AGN activity of galaxies inside the cooling regions compared to galaxies in the outer parts of the cluster. This prediction remains to be confirmed or refuted by observations.Comment: machtes published versio

    Cool core cycles: Cold gas and AGN jet feedback in cluster cores

    Full text link
    Using high-resolution 3-D and 2-D (axisymmetric) hydrodynamic simulations in spherical geometry, we study the evolution of cool cluster cores heated by feedback-driven bipolar active galactic nuclei (AGN) jets. Condensation of cold gas, and the consequent enhanced accretion, is required for AGN feedback to balance radiative cooling with reasonable efficiencies, and to match the observed cool core properties. A feedback efficiency (mechanical luminosity ϵM˙accc2\approx \epsilon \dot{M}_{\rm acc} c^2; where M˙acc\dot{M}_{\rm acc} is the mass accretion rate at 1 kpc) as small as 5×1055 \times 10^{-5} is sufficient to reduce the cooling/accretion rate by 10\sim 10 compared to a pure cooling flow. This value is smaller compared to the ones considered earlier, and is consistent with the jet efficiency and the fact that only a small fraction of gas at 1 kpc is accreted on to the supermassive black hole (SMBH). We find hysteresis cycles in all our simulations with cold mode feedback: {\em condensation} of cold gas when the ratio of the cooling-time to the free-fall time (tcool/tfft_{\rm cool}/t_{\rm ff}) is 10\lesssim 10 leads to a sudden enhancement in the accretion rate; a large accretion rate causes strong jets and {\em overheating} of the hot ICM such that tcool/tff>10t_{\rm cool}/t_{\rm ff} > 10; further condensation of cold gas is suppressed and the accretion rate falls, leading to slow cooling of the core and condensation of cold gas, restarting the cycle. Therefore, there is a spread in core properties, such as the jet power, accretion rate, for the same value of core entropy or tcool/tfft_{\rm cool}/t_{\rm ff}. A fewer number of cycles are observed for higher efficiencies and for lower mass halos because the core is overheated to a longer cooling time. The 3-D simulations show the formation of a few-kpc scale, rotationally-supported, massive (1011M\sim 10^{11} M_\odot) cold gas torus. (abstract abridged)Comment: 22 pages, 15 figures; ApJ accepted version (figures downgraded to smaller size, as required for arxiv submission

    Faint blue counts from formation of dwarf galaxies at z approximately equals 1

    Get PDF
    The nature of faint blue objects (FBO's) has been a source of much speculation since their detection in deep CCD images of the sky. Their high surface density argues against them being progenitors of present-day bright galaxies and since they are only weakly clustered on small scales, they cannot be entities that merged together to form present-day galaxies. Babul & Rees (1992) have suggested that the observed faint blue counts may be due to dwarf elliptical galaxies undergoing their initial starburst at z is approximately equal to 1. In generic hierarchical clustering scenarios, however, dwarf galaxy halos (M is approximately 10(exp 9) solar mass) are expected to form at an earlier epoch; for example, typical 10(exp 9) solar mass halos will virialize at z is approximately equal to 2.3 if the power-spectrum for the density fluctuations is that of the standard b = 2 cold dark matter (CDM) model. Under 'ordinary conditions' the gas would rapidly cool, collect in the cores, and undergo star-formation. Conditions at high redshifts are far from 'ordinary'. The intense UV background will prevent the gas in the dwarf halos from cooling, the halos being released from their suspended state only when the UV flux has diminished sufficiently

    Isotropic Heating of Galaxy Cluster Cores via Rapidly Reorienting AGN Jets

    Full text link
    AGN jets carry more than sufficient energy to stave off catastrophic cooling of the intracluster medium (ICM) in the cores of cool-core clusters. However, in order to prevent catastrophic cooling, the ICM must be heated in a near-isotropic fashion and narrow bipolar jets with Pjet=104445P_{\rm jet}=10^{44-45} ergs/s, typical of radio AGNs at cluster centres, are inefficient at heating the gas in the transverse direction to the jets. We argue that due to existent conditions in cluster cores, the SMBHs will, in addition to accreting gas via radiatively inefficient flows, experience short stochastic episodes of enhanced accretion via thin discs. In general, the orientation of these accretion discs will be misaligned with the spin axis of the black holes and the ensuing torques will cause the black hole's spin axis (and therefore, the jet axis) to slew and rapidly change direction. This model not only explains recent observations showing successive generations of jet-lobes-bubbles in individual cool-core clusters that are offset from each other in the angular direction with respect to the cluster center, but also shows that AGN jets {\it can} heat the cluster core nearly isotropically on the gas cooling timescale. Our model {\it does} require that the SMBHs at the centers of cool-core clusters be spinning relatively slowly. Torques from individual misaligned discs are ineffective at tilting rapidly spinning black holes by more than a few degrees. Additionally, since SMBHs that host thin accretion discs will manifest as quasars, we predict that roughly 1--2 rich clusters within z<0.5z<0.5 should have quasars at their centers.Comment: 10 pages; accepted in ApJ; updated to conform with the accepted Journal versio
    corecore