49 research outputs found
The fundamental pro-groupoid of an affine 2-scheme
A natural question in the theory of Tannakian categories is: What if you
don't remember \Forget? Working over an arbitrary commutative ring , we
prove that an answer to this question is given by the functor represented by
the \'etale fundamental groupoid \pi_1(\spec(R)), i.e.\ the separable
absolute Galois group of when it is a field. This gives a new definition
for \'etale \pi_1(\spec(R)) in terms of the category of -modules rather
than the category of \'etale covers. More generally, we introduce a new notion
of "commutative 2-ring" that includes both Grothendieck topoi and symmetric
monoidal categories of modules, and define a notion of for the
corresponding "affine 2-schemes." These results help to simplify and clarify
some of the peculiarities of the \'etale fundamental group. For example,
\'etale fundamental groups are not "true" groups but only profinite groups, and
one cannot hope to recover more: the "Tannakian" functor represented by the
\'etale fundamental group of a scheme preserves finite products but not all
products.Comment: 46 pages + bibliography. Diagrams drawn in Tik
Multiple-Color Optical Activation, Silencing, and Desynchronization of Neural Activity, with Single-Spike Temporal Resolution
The quest to determine how precise neural activity patterns mediate computation, behavior, and pathology would be greatly aided by a set of tools for reliably activating and inactivating genetically targeted neurons, in a temporally precise and rapidly reversible fashion. Having earlier adapted a light-activated cation channel, channelrhodopsin-2 (ChR2), for allowing neurons to be stimulated by blue light, we searched for a complementary tool that would enable optical neuronal inhibition, driven by light of a second color. Here we report that targeting the codon-optimized form of the light-driven chloride pump halorhodopsin from the archaebacterium Natronomas pharaonis (hereafter abbreviated Halo) to genetically-specified neurons enables them to be silenced reliably, and reversibly, by millisecond-timescale pulses of yellow light. We show that trains of yellow and blue light pulses can drive high-fidelity sequences of hyperpolarizations and depolarizations in neurons simultaneously expressing yellow light-driven Halo and blue light-driven ChR2, allowing for the first time manipulations of neural synchrony without perturbation of other parameters such as spiking rates. The Halo/ChR2 system thus constitutes a powerful toolbox for multichannel photoinhibition and photostimulation of virally or transgenically targeted neural circuits without need for exogenous chemicals, enabling systematic analysis and engineering of the brain, and quantitative bioengineering of excitable cells
Functional significance of the hemadsorption activity of influenza virus neuraminidase and its alteration in pandemic viruses
Human influenza viruses derive their genes from avian viruses. The neuraminidase (NA) of the avian viruses has, in addition to the catalytic site, a separate sialic acid binding site (hemadsorption site) that is not present in human viruses. The biological significance of the NA hemadsorption activity in avian influenza viruses remained elusive. A sequence database analysis revealed that the NAs of the majority of human H2N2 viruses isolated during the influenza pandemic of 1957 differ from their putative avian precursor by amino acid substitutions in the hemadsorption site. We found that the NA of a representative pandemic virus A/Singapore/1/57 (H2N2) lacks hemadsorption activity and that a single reversion to the avian-virus-like sequence (N367S) restores hemadsorption. Using this hemadsorption-positive NA, we generated three NA variants with substitutions S370L, N400S and W403R that have been found in the hemadsorption site of human H2N2 viruses. Each substitution abolished hemadsorption activity. Although, there was no correlation between hemadsorption activity of the NA variants and their enzymatic activity with respect to monovalent substrates, all four hemadsorption-negative NAs desialylated macromolecular substrates significantly slower than did the hemadsorption-positive counterpart. The NA of the 1918 pandemic virus A/Brevig Mission/1/18 (H1N1) also differed from avian N1 NAs by reduced hemadsorption activity and less efficient hydrolysis of macromolecular substrates. Our data indicate that the hemadsorption site serves to enhance the catalytic efficiency of NA and they suggest that, in addition to changes in the receptor-binding specificity of the hemagglutinin, alterations of the NA are needed for the emergence of pandemic influenza viruses
Blood Feeding and Insulin-like Peptide 3 Stimulate Proliferation of Hemocytes in the Mosquito Aedes aegypti
All vector mosquito species must feed on the blood of a vertebrate host to produce eggs. Multiple cycles of blood feeding also promote frequent contacts with hosts, which enhance the risk of exposure to infectious agents and disease transmission. Blood feeding triggers the release of insulin-like peptides (ILPs) from the brain of the mosquito Aedes aegypti, which regulate blood meal digestion and egg formation. In turn, hemocytes serve as the most important constitutive defense in mosquitoes against pathogens that enter the hemocoel. Prior studies indicated that blood feeding stimulates hemocytes to increase in abundance, but how this increase in abundance is regulated is unknown. Here, we determined that phagocytic granulocytes and oenocytoids express the A. aegypti insulin receptor (AaMIR). We then showed that: 1) decapitation of mosquitoes after blood feeding inhibited hemocyte proliferation, 2) a single dose of insulin-like peptide 3 (ILP3) sufficient to stimulate egg production rescued proliferation, and 3) knockdown of the AaMIR inhibited ILP3 rescue activity. Infection studies indicated that increased hemocyte abundance enhanced clearance of the bacterium Escherichia coli at lower levels of infection. Surprisingly, however, non-blood fed females better survived intermediate and high levels of E. coli infection than blood fed females. Taken together, our results reveal a previously unrecognized role for the insulin signaling pathway in regulating hemocyte proliferation. Our results also indicate that blood feeding enhances resistance to E. coli at lower levels of infection but reduces tolerance at higher levels of infection
Multi-messenger observations of a binary neutron star merger
On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta
Supplement: "Localization and broadband follow-up of the gravitational-wave transient GW150914" (2016, ApJL, 826, L13)
This Supplement provides supporting material for Abbott et al. (2016a). We briefly summarize past electromagnetic (EM) follow-up efforts as well as the organization and policy of the current EM follow-up program. We compare the four probability sky maps produced for the gravitational-wave transient GW150914, and provide additional details of the EM follow-up observations that were performed in the different bands
Localization and broadband follow-up of the gravitational-wave transient GW150914
A gravitational-wave (GW) transient was identified in data recorded by the Advanced Laser Interferometer Gravitational-wave Observatory (LIGO) detectors on 2015 September 14. The event, initially designated G184098 and later given the name GW150914, is described in detail elsewhere. By prior arrangement, preliminary estimates of the time, significance, and sky location of the event were shared with 63 teams of observers covering radio, optical, near-infrared, X-ray, and gamma-ray wavelengths with ground- and space-based facilities. In this Letter we describe the low-latency analysis of the GW data and present the sky localization of the first observed compact binary merger. We summarize the follow-up observations reported by 25 teams via private Gamma-ray Coordinates Network circulars, giving an overview of the participating facilities, the GW sky localization coverage, the timeline, and depth of the observations. As this event turned out to be a binary black hole merger, there is little expectation of a detectable electromagnetic (EM) signature. Nevertheless, this first broadband campaign to search for a counterpart of an Advanced LIGO source represents a milestone and highlights the broad capabilities of the transient astronomy community and the observing strategies that have been developed to pursue neutron star binary merger events. Detailed investigations of the EM data and results of the EM follow-up campaign are being disseminated in papers by the individual teams
Localization and Broadband Follow-up of the Gravitational-wave Transient GW150914
A gravitational-wave (GW) transient was identified in data recorded by
the Advanced Laser Interferometer Gravitational-wave Observatory (LIGO)
detectors on 2015 September 14. The event, initially designated G184098
and later given the name GW150914, is described in detail elsewhere. By
prior arrangement, preliminary estimates of the time, significance, and
sky location of the event were shared with 63 teams of observers
covering radio, optical, near-infrared, X-ray, and gamma-ray wavelengths
with ground- and space-based facilities. In this Letter we describe the
low-latency analysis of the GW data and present the sky localization of
the first observed compact binary merger. We summarize the follow-up
observations reported by 25 teams via private Gamma-ray Coordinates
Network circulars, giving an overview of the participating facilities,
the GW sky localization coverage, the timeline, and depth of the
observations. As this event turned out to be a binary black hole merger,
there is little expectation of a detectable electromagnetic (EM)
signature. Nevertheless, this first broadband campaign to search for a
counterpart of an Advanced LIGO source represents a milestone and
highlights the broad capabilities of the transient astronomy community
and the observing strategies that have been developed to pursue neutron
star binary merger events. Detailed investigations of the EM data and
results of the EM follow-up campaign are being disseminated in papers by
the individual teams.
</p
Multi-messenger Observations of a Binary Neutron Star Merger
On 2017 August 17 a binary neutron star coalescence candidate (later
designated GW170817) with merger time 12:41:04 UTC was observed through
gravitational waves by the Advanced LIGO and Advanced Virgo detectors.
The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray
burst (GRB 170817A) with a time delay of ∼ 1.7 {{s}} with respect to
the merger time. From the gravitational-wave signal, the source was
initially localized to a sky region of 31 deg2 at a
luminosity distance of {40}-8+8 Mpc and with
component masses consistent with neutron stars. The component masses
were later measured to be in the range 0.86 to 2.26 {M}ȯ
. An extensive observing campaign was launched across the
electromagnetic spectrum leading to the discovery of a bright optical
transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC
4993 (at ∼ 40 {{Mpc}}) less than 11 hours after the merger by the
One-Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The
optical transient was independently detected by multiple teams within an
hour. Subsequent observations targeted the object and its environment.
Early ultraviolet observations revealed a blue transient that faded
within 48 hours. Optical and infrared observations showed a redward
evolution over ∼10 days. Following early non-detections, X-ray and
radio emission were discovered at the transient’s position ∼ 9
and ∼ 16 days, respectively, after the merger. Both the X-ray and
radio emission likely arise from a physical process that is distinct
from the one that generates the UV/optical/near-infrared emission. No
ultra-high-energy gamma-rays and no neutrino candidates consistent with
the source were found in follow-up searches. These observations support
the hypothesis that GW170817 was produced by the merger of two neutron
stars in NGC 4993 followed by a short gamma-ray burst (GRB 170817A) and
a kilonova/macronova powered by the radioactive decay of r-process
nuclei synthesized in the ejecta.</p