156 research outputs found

    Rapid MPN-Qpcr Screening for Pathogens in Air, Soil, Water, and Agricultural Produce

    Get PDF
    A sensitive, high-throughput, and cost-effective method for screening bacterial pathogens in the environment was developed. A variety of environmental samples, including aerosols, soil of various types (sand, sand/clay mix, and clay), wastewater, and vegetable surface (modeled by tomato), were concomitantly spiked with Salmonella enterica and/or Pseudomonas aeruginosa to determine recovery rates and limits of detection. The various matrices were first enriched with a general pre-enrichment broth in a dilution series and then enumerated by most probable number (MPN) estimation using quantitative PCR for rapid screening of amplicon presence. Soil and aerosols were then tested in non-spiked environmental samples, as these matrices are prone to large experimental variation. Limit of detection in the various soil types was 1–3 colony-forming units (CFU) g[superscript −1]; on vegetable surface, 5 CFU per tomato; in treated wastewater, 5 CFU L[superscript −1]; and in aerosols, >300 CFU mL[superscript −1]. Our method accurately identified S. enterica in non-spiked environmental soil samples within a day, while traditional methods took 4 to 5 days and required sorting through biochemically and morphologically similar species. Likewise, our method successfully identified P. aeruginosa in non-spiked aerosols generated by a domestic wastewater treatment system. The obtained results suggest that the developed method presents a broad approach for the rapid, efficient, and reliable detection of relatively low densities of pathogenic organisms in challenging environmental samples.United States-Israel Binational Agricultural Research and Development Fund (Grant No. CP-9033-09)MIT International Science and Technology InitiativesKraft Foods Compan

    Discovery and validation of serum glycoprotein biomarkers for high grade serous ovarian cancer

    Get PDF
    Purpose: This study aimed to identify serum glycoprotein biomarkers for early detection of high-grade serous ovarian cancer (HGSOC), the most common and aggressive histotype of ovarian cancer./ Experimental design: The glycoproteomics pipeline lectin magnetic bead array (LeMBA)-mass spectrometry (MS) was used in age-matched case-control serum samples. Clinical samples collected at diagnosis were divided into discovery (n = 30) and validation (n = 98) sets. We also analysed a set of preclinical sera (n = 30) collected prior to HGSOC diagnosis in the UK Collaborative Trial of Ovarian Cancer Screening./ Results: A 7-lectin LeMBA-MS/MS discovery screen shortlisted 59 candidate proteins and three lectins. Validation analysis using 3-lectin LeMBA-multiple reaction monitoring (MRM) confirmed elevated A1AT, AACT, CO9, HPT and ITIH3 and reduced A2MG, ALS, IBP3 and PON1 glycoforms in HGSOC. The best performing multimarker signature had 87.7% area under the receiver operating curve, 90.7% specificity and 70.4% sensitivity for distinguishing HGSOC from benign and healthy groups. In the preclinical set, CO9, ITIH3 and A2MG glycoforms were altered in samples collected 11.1 ± 5.1 months prior to HGSOC diagnosis, suggesting potential for early detection./ Conclusions and clinical relevance: Our findings provide evidence of candidate early HGSOC serum glycoprotein biomarkers, laying the foundation for further study in larger cohorts

    Identification of Genes with Allelic Imbalance on 6p Associated with Nasopharyngeal Carcinoma in Southern Chinese

    Get PDF
    Nasopharyngeal carcinoma (NPC) is a malignancy of epithelial origin. The etiology of NPC is complex and includes multiple genetic and environmental factors. We employed case-control analysis to study the association of chromosome 6p regions with NPC. In total, 360 subjects and 360 healthy controls were included, and 233 single nucleotide polymorphisms (SNPs) on 6p were examined. Significant single-marker associations were found for SNPs rs2267633 (p = 4.49×10−5), rs2076483 (most significant, p = 3.36×10−5), and rs29230 (p = 1.43×10−4). The highly associated genes were the gamma-amino butyric acid B receptor 1 (GABBR1), human leukocyte antigen (HLA-A), and HLA complex group 9 (HCG9). Haplotypic associations were found for haplotypes AAA (located within GABBR1, p-value  = 6.46×10−5) and TT (located within HLA-A, p = 0.0014). Further investigation of the homozygous genotype frequencies between cases and controls suggested that micro-deletion regions occur in GABBR1 and neural precursor cell expressed developmentally down-regulated 9 (NEDD9). Quantitative real-time polymerase chain reaction (qPCR) using 11 pairs of NPC biopsy samples confirmed the significant decline in GABBR1 and NEDD9 mRNA expression in the cancer tissues compared to the adjacent non-tumor tissue (p<0.05). Our study demonstrates that multiple chromosome 6p susceptibility loci contribute to the risk of NPC, possibly though GABBR1 and NEDD9 loss of function

    Combined Forward-Backward Asymmetry Measurements in Top-Antitop Quark Production at the Tevatron

    Get PDF
    The CDF and D0 experiments at the Fermilab Tevatron have measured the asymmetry between yields of forward- and backward-produced top and antitop quarks based on their rapidity difference and the asymmetry between their decay leptons. These measurements use the full data sets collected in proton-antiproton collisions at a center-of-mass energy of s=1.96\sqrt s =1.96 TeV. We report the results of combinations of the inclusive asymmetries and their differential dependencies on relevant kinematic quantities. The combined inclusive asymmetry is AFBttˉ=0.128±0.025A_{\mathrm{FB}}^{t\bar{t}} = 0.128 \pm 0.025. The combined inclusive and differential asymmetries are consistent with recent standard model predictions

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    Get PDF
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research.Peer reviewe

    Molecular and functional profiling of apical versus basolateral small extracellular vesicles derived from primary human proximal tubular epithelial cells under inflammatory conditions

    Get PDF
    Proximal tubular epithelial cells (PTEC) are central players in inflammatory kidney diseases. However, the complex signalling mechanism/s via which polarized PTEC mediate disease progression are poorly understood. Small extracellular vesicles (sEV), including exosomes, are recognized as fundamental components of cellular communication and signalling courtesy of their molecular cargo (lipids, microRNA, proteins). In this study, we examined the molecular content and function of sEV secreted from the apical versus basolateral surfaces of polarized human primary PTEC under inflammatory diseased conditions. PTEC were cultured under normal and inflammatory conditions on Transwell inserts to enable separate collection and isolation of apical/basolateral sEV. Significantly increased numbers of apical and basolateral sEV were secreted under inflammatory conditions compared with equivalent normal conditions. Multi-omics analysis revealed distinct molecular profiles (lipids, microRNA, proteins) between inflammatory and normal conditions for both apical and basolateral sEV. Biological pathway analyses of significantly differentially expressed molecules associated apical inflammatory sEV with processes of cell survival and immunological disease, while basolateral inflammatory sEV were linked to pathways of immune cell trafficking and cell-to-cell signalling. In line with this mechanistic concept, functional assays demonstrated significantly increased production of chemokines (monocyte chemoattractant protein-1, interleukin-8) and immuno-regulatory cytokine interleukin-10 by peripheral blood mononuclear cells activated with basolateral sEV derived from inflammatory PTEC. We propose that the distinct molecular composition of sEV released from the apical versus basolateral membranes of human inflammatory PTEC may reflect specialized functional roles, with basolateral-derived sEV pivotal in modulating tubulointerstitial inflammatory responses observed in many immune-mediated kidney diseases. These findings provide a rationale to further evaluate these sEV-mediated inflammatory pathways as targets for biomarker and therapeutic development.</p

    Marizomib suppresses triple-negative breast cancer via proteasome and oxidative phosphorylation inhibition

    No full text
    Purpose: Lacking effective targeted therapies, triple-negative breast cancer (TNBCs) is highly aggressive and metastatic disease, and remains clinically challenging breast cancer subtype to treat. Despite the survival dependency on the proteasome pathway genes, FDA-approved proteasome inhibitors induced minimal clinical response in breast cancer patients due to weak proteasome inhibition. Hence, developing effective targeted therapy using potent proteasome inhibitor is required.Methods: We evaluated anti-cancer activity of a potent proteasome inhibitor, marizomib, in vitro using breast cancer lines and in vivo using 4T1.2 murine syngeneic model, MDA-MB-231 xenografts, and patient-derived tumor xenografts. Global proteome profiling, western blots, and RT-qPCR were used to investigate the mechanism of action for marizomib. Effect of marizomib on lung and brain metastasis was evaluated using syngeneic 4T1BR4 murine TNBC model in vivo.Results: We show that marizomib inhibits multiple proteasome catalytic activities and induces a better anti-tumor response in TNBC cell lines and patient-derived xenografts alone and in combination with the standard-of-care chemotherapy. Mechanistically, we show that marizomib is a dual inhibitor of proteasome and oxidative phosphorylation (OXPHOS) in TNBCs. Marizomib reduces lung and brain metastases by reducing the number of circulating tumor cells and the expression of genes involved in the epithelial-to-mesenchymal transition. We demonstrate that marizomib-induced OXPHOS inhibition upregulates glycolysis to meet the energetic demands of TNBC cells and combined inhibition of glycolysis with marizomib leads to a synergistic anti-cancer activity.Conclusions: Our data provide a strong rationale for a clinical evaluation of marizomib in primary and metastatic TNBC patients

    Human proximal tubular epithelial cell-derived small extracellular vesicles mediate synchronized tubular ferroptosis in hypoxic kidney injury

    No full text
    Hypoxia is the key pathobiological trigger of tubular oxidative stress and cell death that drives the transition of acute kidney injury (AKI) to chronic kidney disease (CKD). The mitochondrial-rich proximal tubular epithelial cells (PTEC) are uniquely sensitive to hypoxia and thus, are pivotal in propagating the sustained tubular loss of AKI-to-CKD transition. Here, we examined the role of PTEC-derived small extracellular vesicles (sEV) in propagating the ‘wave of tubular death’.Ex vivo patient-derived PTEC were cultured under normoxia (21 % O2) and hypoxia (1 % O2) on Transwell inserts for isolation and analysis of sEV secreted from apical versus basolateral PTEC surfaces. Increased numbers of sEV were secreted from the apical surface of hypoxic PTEC compared with normoxic PTEC. No differences in basolateral sEV numbers were observed between culture conditions. Biological pathway analysis of hypoxic-apical sEV cargo identified distinct miRNAs linked with cellular injury pathways. In functional assays, hypoxic-apical sEV selectively induced ferroptotic cell death (↓glutathione peroxidase-4, ↑lipid peroxidation) in autologous PTEC compared with normoxic-apical sEV. The addition of ferroptosis inhibitors, ferrostatin-1 and baicalein, attenuated PTEC ferroptosis. RNAse A pretreatment of hypoxic-apical sEV also abrogated PTEC ferroptosis, demonstrating a role for sEV RNA in ferroptotic ‘wave of death’ signalling. In line with these in vitro findings, in situ immunolabelling of diagnostic kidney biopsies from AKI patients with clinical progression to CKD (AKI-to-CKD transition) showed evidence of ferroptosis propagation (increased numbers of ACSL4+ PTEC), while urine-derived sEV (usEV) from these ‘AKI-to-CKD transition’ patients triggered PTEC ferroptosis (↑lipid peroxidation) in functional studies.Our data establish PTEC-derived apical sEV and their intravesicular RNA as mediators of tubular lipid peroxidation and ferroptosis in hypoxic kidney injury. This concept of how tubular pathology is propagated from the initiating insult into a ‘wave of death’ provides novel therapeutic check-points for targeting AKI-to-CKD transition

    The association of multimorbidity with preclinical AD stages and SNAP in cognitively unimpaired persons

    No full text
    © The Author(s) 2018. Published by Oxford University Press on behalf of The Gerontological Society of America. Background: Multimorbidity (defined as ≥2 chronic conditions) has been associated with increased risk of mild cognitive impairment and cross-sectionally with imaging biomarkers of neurodegeneration in cognitively unimpaired persons aged ≥70 years. Its association with preclinical Alzheimer’s disease stages has not been studied in detail yet. The objective of the study was to assess the cross-sectional association of multimorbidity with preclinical Alzheimer’s disease stages and suspected non-amyloid pathophysiology in cognitively unimpaired participants of the Mayo Clinic Study of Aging (≥50 years of age). Methods: The study included 1,535 cognitively unimpaired participants with multimorbidity, 11C-PiB positron emission topography and magnetic resonance imaging data available. Abnormal (elevated) 11C-PiB-positron emission topography retention ratio (A+; standardized uptake value ratio \u3e1.42) and abnormal (reduced) Alzheimer’s disease signature cortical thickness (N+; \u3c2.67 mm) were used to define biomarker combinations (A−N−, A+N−, A−N+, A+N+). Chronic medical conditions were ascertained by using the Rochester Epidemiology Project medical records linkage system and International Classification of Diseases criteria. Cross-sectional associations were examined using multinomial logistic regression models adjusting for age, sex, education, and apolipoprotein E ℇ4 allele status. Results: Frequency of A+, N+, A+N+, and A−N+ biomarker groups increased significantly with increasing number of chronic conditions. Multimorbidity was significantly associated with A+N+ (vs A−N−; odds ratio, 1.76, 95% confidence interval 1.02, 2.90) and A−N+ (vs A− N−; odds ratio, 2.16, 95% confidence interval 1.47, 3.18). There was a dose–response relationship between increasing number of chronic conditions (eg, 0–1, 2–3, and 4+) and the odds of A+N+ and A−N+ (vs A−N−). Conclusions: Multimorbidity was associated with biomarker combinations that included neurodegeneration with or without elevated amyloid deposition (ie, A−N+, A+N+). The associations should be validated in longitudinal studies
    corecore