37 research outputs found

    Air cooling powered by façade integrated coloured opaque solar thermal panels

    Get PDF
    For building integration of solar-powered energy systems, aesthetic aspects play an importantrole. Covering a standard solar collector with a coloured glazing, opaque to the human eye but highly transparent to solar energy, permits a perfect architectural integration of solar thermal panels into glazed building façades. The thermal energy produced can be used for both solar heating and cooling, as well as for domestic hot water. The principle of the coloured appearance is based on interference in the thin-film coating on the reverse side of the cover glass. Different interference filters based on nano-composite materials deposited by the solgel method were presented at CISBAT 2007 [1]. Currently, we are developing new plasma-deposition processes, which are more suitable for industrial large-scale production. A new state-of-the-art ultra-high vacuum (UHV) system for magnetron sputtering deposition of novel nano-composite solar coatings has recently been designed, constructed, and installed at the Solar Energy and Building Physics Laboratory (LESO-PB). Up to five different magnetron sources can be used simultaneously, in reactive and non-reactive mode. The geometric configuration of the chamber has been optimised for best film homogeneity and allows the deposition on substrates up to 100 mm in diameter. The optical and electronic properties of thin films are closely interrelated and highly relevant for solar coatings. Photoelectron spectroscopy provides information on the coating structure, the deposited material and its chemical state inside the coating, as well as the nature of the interface between different layers. A system for ESCA analysis (Electron Spectroscopy for Chemical Analysis) has recently been installed and put into operation at LESO-PB. By ellipsometry and spectrophotometry, we can determine exactly the different optical properties of the coating, such as layer thickness, refractive index, or absorption coefficient. This provides best conditions for highly efficient research and development on new materials for further optimisation of the coloured interference filters.First results have been obtained with our new experimental infrastructure and will be presented in this contribution

    Learning the cell cycle with a game: Virtual experiments in cell biology

    Get PDF
    Cell Cycle Learn (CCL) is a learning game designed for undergraduate students in Biology to learn common knowledge about the cell-division cycle along with practical skills related with setting up an experiment and the scientific method in general. In CCL, learners are guided through the process of formulating hypotheses, conducting virtual experiments and analysing the results in order to validate or invalidate the hypotheses. The game has been designed in the University of Toulouse and introduced last year as part of the curriculum of a cellular biology class. This paper presents early results of an evaluation of the game enabled by questionnaires filled by the participants and game data collected during the training sessions. The results demonstrate with examples that both types of data can be used to assess the game's utility

    Quantime - A miniature cesium atomic clock using CPT technique for telecom application

    Get PDF
    The Quantime project aims at developing a miniature atomic clock suited for the telecom market, requiring a wide operating temperature range (from -40 to +85°C), and a low production cost. The CPT (Coherent Population Trapping) technique for atomic interrogation is used for miniaturization and low power consumption. In the first phase of the project, the clock architecture was chosen, and the main sub-systems were developed. A clock breadboarding demonstrator was assembled and the measured Allan deviation of 1E-11 at 400 s confirms the operation of all the sub-systems

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    Get PDF
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research.Peer reviewe
    corecore