60 research outputs found

    Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition)

    Get PDF
    In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. For example, a key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process versus those that measure fl ux through the autophagy pathway (i.e., the complete process including the amount and rate of cargo sequestered and degraded). In particular, a block in macroautophagy that results in autophagosome accumulation must be differentiated from stimuli that increase autophagic activity, defi ned as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (inmost higher eukaryotes and some protists such as Dictyostelium ) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the fi eld understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. It is worth emphasizing here that lysosomal digestion is a stage of autophagy and evaluating its competence is a crucial part of the evaluation of autophagic flux, or complete autophagy. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. Along these lines, because of the potential for pleiotropic effects due to blocking autophagy through genetic manipulation it is imperative to delete or knock down more than one autophagy-related gene. In addition, some individual Atg proteins, or groups of proteins, are involved in other cellular pathways so not all Atg proteins can be used as a specific marker for an autophagic process. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field

    The SEA complex – the beginning

    No full text
    The presence of distinctive internal membrane compartments, dynamically connected via selective transport pathways, is a hallmark of eukaryotic cells. Many of the proteins required for formation and maintenance of these compartments share an evolutionary history. We have recently identified a new conserved protein complex – the SEA complex – that possesses proteins with structural characteristics similar to the membrane coating complexes such as the nuclear pore complex (NPC), the COPII vesicle coating complex and HOPS/CORVET tethering complexes. The SEA complex in yeast is dynamically associated to the vacuole. The data on the function of the SEA complex remain extremely limited. Here we will discuss a possible role of the SEA complex based on the data from genetic assays and a number of functional studies in both yeast and other eukaryotes

    Contacts between 16S ribosomal RNA and mRNA, within the spacer region separating the AUG initiator codon and the Shine-Dalgarno sequence; a site-directed cross-linking study.

    No full text
    mRNA analogues containing several 4-thiouridine (thio-U) residues at selected positions were prepared by T7-transcription. The spacer region between the Shine-Dalgarno sequence and the AUG codon consisted of four or eight bases with a single thio-U at a variable position; alternatively, cro-mRNA analogues were used carrying the thio-U substituted spacer sequence UUGU. The mRNAs were bound to E. coli ribosomes, and--after irradiation--the sites of cross-linking to 16S RNA were analysed. Three cross-links to the 16S RNA from the spacer region were observed, namely to positions 665, 1360, and a site close to nucleotide 1530. The cross-links were formed in different amounts in the presence or absence of tRNA(fMet), and were observed from thio-U residues located at various positions within the spacer sequence, although in the presence of tRNA they were in general stronger from positions close to the Shine-Dalgarno end of the spacer. The cross-linking behaviour in this upstream area of the mRNA is thus rather different in character from the previously published pattern in the downstream area. From considerations of structural conservation in small subunit RNA, we propose that both the upstream and downstream cross-links to 16S RNA reflect a universal mRNA path through the ribosome
    corecore