1,582 research outputs found

    Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids

    Get PDF
    The mTORC1 kinase promotes growth in response to growth factors, energy levels, and amino acids, and its activity is often deregulated in disease. The Rag GTPases interact with mTORC1 and are proposed to activate it in response to amino acids by promoting mTORC1 translocation to a membrane-bound compartment that contains the mTORC1 activator, Rheb. We show that amino acids induce the movement of mTORC1 to lysosomal membranes, where the Rag proteins reside. A complex encoded by the MAPKSP1, ROBLD3, and c11orf59 genes, which we term Ragulator, interacts with the Rag GTPases, recruits them to lysosomes, and is essential for mTORC1 activation. Constitutive targeting of mTORC1 to the lysosomal surface is sufficient to render the mTORC1 pathway amino acid insensitive and independent of Rag and Ragulator, but not Rheb, function. Thus, Rag-Ragulator-mediated translocation of mTORC1 to lysosomal membranes is the key event in amino acid signaling to mTORC1.National Institutes of Health (U.S.) (Grant CA103866)National Institutes of Health (U.S.) (Grant AI47389)United States. Dept. of Defense (W81XWH-07-0448)W. M. Keck FoundationJane Coffin Childs Memorial Fund for Medical ResearchLAM Foundation (Fellowship

    The TASCC of Secretion

    Get PDF
    Author Manuscript 2012 July 05The oncogene-induced activation of signaling pathways involving the tumor suppressor proteins p53 and retinoblastoma is likely an important mechanism for preventing the proliferation of potential cancer cells (1, 2). This activation causes cells to exit the cell division cycle and enter a senescent state, which is characterized by major changes in chromatin structure that are thought to render senescence irreversible. Despite the absence of proliferation, senescent cells are not as quiescent as first thought, as they signal to their surrounding environment by activating a protein secretion program (3, 4). On page 966 of this issue, Narita et al. (5) show that to enable this secretory state, a senescent cell profoundly reorganizes its endomembrane system

    The Folliculin Tumor Suppressor Is a GAP for the RagC/D GTPases That Signal Amino Acid Levels to mTORC1

    Get PDF
    The mTORC1 kinase is a master growth regulator that senses numerous environmental cues, including amino acids. The Rag GTPases interact with mTORC1 and signal amino acid sufficiency by promoting the translocation of mTORC1 to the lysosomal surface, its site of activation. The Rags are unusual GTPases in that they function as obligate heterodimers, which consist of RagA or B bound to RagC or D. While the loading of RagA/B with GTP initiates amino acid signaling to mTORC1, the role of RagC/D is unknown. Here, we show that RagC/D is a key regulator of the interaction of mTORC1 with the Rag heterodimer and that, unexpectedly, RagC/D must be GDP bound for the interaction to occur. We identify FLCN and its binding partners, FNIP1/2, as Rag-interacting proteins with GAP activity for RagC/D, but not RagA/B. Thus, we reveal a role for RagC/D in mTORC1 activation and a molecular function for the FLCN tumor suppressor.United States. National Institutes of Health (CA103866)United States. National Institutes of Health (AI47389)United States. Department of Defense (W81XWH-07-0448)National Cancer Institute (U.S.) (F30CA180754

    mTORC1 Senses Lysosomal Amino Acids Through an Inside-Out Mechanism That Requires the Vacuolar H+-ATPase

    Get PDF
    The mTOR complex 1 (mTORC1) protein kinase is a master growth regulator that is stimulated by amino acids. Amino acids activate the Rag guanosine triphosphatases (GTPases), which promote the translocation of mTORC1 to the lysosomal surface, the site of mTORC1 activation. We found that the vacuolar H+–adenosine triphosphatase ATPase (v-ATPase) is necessary for amino acids to activate mTORC1. The v-ATPase engages in extensive amino acid–sensitive interactions with the Ragulator, a scaffolding complex that anchors the Rag GTPases to the lysosome. In a cell-free system, ATP hydrolysis by the v-ATPase was necessary for amino acids to regulate the v-ATPase-Ragulator interaction and promote mTORC1 translocation. Results obtained in vitro and in human cells suggest that amino acid signaling begins within the lysosomal lumen. These results identify the v-ATPase as a component of the mTOR pathway and delineate a lysosome-associated machinery for amino acid sensing.Damon Runyon Cancer Research FoundationMillennium Pharmaceuticals, Inc.American Lebanese Syrian Associated CharitiesHoward Hughes Medical Institut

    Caffeine Inhibits EGF-Stimulated Trophoblast Cell Motility through the Inhibition of mTORC2 and Akt.

    Get PDF
    Impaired trophoblast invasion is associated with pregnancy disorders such as early pregnancy loss and preeclampsia. There is evidence to suggest that the consumption of caffeine during pregnancy may increase the risk of pregnancy loss; however, little is known about the direct effect of caffeine on normal trophoblast biology. Our objectives were to examine the effect of caffeine on trophoblast migration and motility after stimulation with epidermal growth factor (EGF) and to investigate the intracellular signaling pathways involved in this process. Primary first-trimester extravillous trophoblasts (EVT) and the EVT-derived cell line SGHPL-4 were used to study the effect of caffeine on EGF-stimulated cellular motility using time-lapse microscopy. SGHPL-4 cells were further used to study the effect of caffeine and cAMP on EGF-stimulated invasion of fibrin gels. The influence of caffeine and cAMP on EGF-stimulated intracellular signaling pathways leading to the activation of Akt were investigated by Western blot analysis. Caffeine inhibits both EGF-stimulated primary EVT and SGHPL-4 cell motility. EGF stimulation activates phosphatidylinositol 3-kinase, and Akt and caffeine inhibit this activation. Although cAMP inhibits both motility and invasion, it does not inhibit the activation of Akt, indicating that the effects of caffeine seen in this study are independent of cAMP. Further investigation indicated a role for mammalian target of rapamycin complex 2 (mTORC2) as a target for the inhibitory effect of caffeine. In conclusion, we demonstrate that caffeine inhibits EGF-stimulated trophoblast invasion and motility in vitro and so could adversely influence trophoblast biology in vivo

    Asymmetric apportioning of aged mitochondria between daughter cells is required for stemness

    Get PDF
    By dividing asymmetrically, stem cells can generate two daughter cells with distinct fates. However, evidence is limited in mammalian systems for the selective apportioning of subcellular contents between daughters. We followed the fates of old and young organelles during the division of human mammary stemlike cells and found that such cells apportion aged mitochondria asymmetrically between daughter cells. Daughter cells that received fewer old mitochondria maintained stem cell traits. Inhibition of mitochondrial fission disrupted both the age-dependent subcellular localization and segregation of mitochondria and caused loss of stem cell properties in the progeny cells. Hence, mechanisms exist for mammalian stemlike cells to asymmetrically sort aged and young mitochondria, and these are important for maintaining stemness properties.National Science Foundation (U.S.). Long-Term Ecological Research Program (DEB-8811884)National Science Foundation (U.S.). Long-Term Ecological Research Program (DEB-9411972)National Science Foundation (U.S.). Long-Term Ecological Research Program (DEB-0080382)National Science Foundation (U.S.). Long-Term Ecological Research Program (DEB-0620652)National Science Foundation (U.S.). Long-Term Ecological Research Program (DEB-1234162)National Science Foundation (U.S.). (Biocomplexity Coupled Biogeocemhical Cycles. DEB-0322057)National Science Foundation (U.S.). Long-Term Research in Environmental Biology (DEB-0716587)National Science Foundation (U.S.). Long-Term Research in Environmental Biology (DEB-1242531)National Science Foundation (U.S.). Long-Term Research in Ecosystem Sciences (DEB-1120064)United States. Dept. of Energy. Program for Ecoysystem Research (DE-FG02-96ER62291)United States. Dept. of Energy. Office of Biological and Environmental Research. National Institute for Climatic Change Research (Grant DE-FC02-06ER64158

    GSK3-mediated raptor phosphorylation supports amino acid-dependent Q2 mTORC1-directed signalling

    Get PDF
    The mammalian or mechanistic target of rapamycin (mTOR) complex 1 (mTORC1) is a ubiquitously expressed multimeric protein kinase complex that integrates nutrient and growth factor signals for the co-ordinated regulation of cellular metabolism and cell growth. Herein, we demonstrate that suppressing the cellular activity of glycogen synthase kinase-3 (GSK3), by use of pharmacological inhibitors or shRNA-mediated gene silencing, results in substantial reduction in amino acid (AA)-regulated mTORC1-directed signalling, as assessed by phosphorylation of multiple downstream mTORC1 targets. We show that GSK3 regulates mTORC1 activity through its ability to phosphorylate the mTOR-associated scaffold protein raptor (regulatory-associated protein of mTOR) on Ser(859). We further demonstrate that either GSK3 inhibition or expression of a S859A mutated raptor leads to reduced interaction between mTOR and raptor and under these circumstances, irrespective of AA availability, there is a consequential loss in phosphorylation of mTOR substrates, such as p70S6K1 (ribosomal S6 kinase 1) and uncoordinated-51-like kinase (ULK1), which results in increased autophagic flux and reduced cellular proliferation

    The multi-modality cardiac imaging approach to the Athlete's heart: an expert consensus of the European Association of Cardiovascular Imaging

    Get PDF
    The term 'athlete's heart' refers to a clinical picture characterized by a slow heart rate and enlargement of the heart. A multi-modality imaging approach to the athlete's heart aims to differentiate physiological changes due to intensive training in the athlete's heart from serious cardiac diseases with similar morphological features. Imaging assessment of the athlete's heart should begin with a thorough echocardiographic examination. Left ventricular (LV) wall thickness by echocardiography can contribute to the distinction between athlete's LV hypertrophy and hypertrophic cardiomyopathy (HCM). LV end-diastolic diameter becomes larger (>55 mm) than the normal limits only in end-stage HCM patients when the LV ejection fraction is <50%. Patients with HCM also show early impairment of LV diastolic function, whereas athletes have normal diastolic function. When echocardiography cannot provide a clear differential diagnosis, cardiac magnetic resonance (CMR) imaging should be performed. With CMR, accurate morphological and functional assessment can be made. Tissue characterization by late gadolinium enhancement may show a distinctive, non-ischaemic pattern in HCM and a variety of other myocardial conditions such as idiopathic dilated cardiomyopathy or myocarditis. The work-up of athletes with suspected coronary artery disease should start with an exercise ECG. In athletes with inconclusive exercise ECG results, exercise stress echocardiography should be considered. Nuclear cardiology techniques, coronary cardiac tomography (CCT) and/or CMR may be performed in selected cases. Owing to radiation exposure and the young age of most athletes, the use of CCT and nuclear cardiology techniques should be restricted to athletes with unclear stress echocardiography or CMR
    • …
    corecore