118 research outputs found

    Case report and summary of literature: giant perineal keloids treated with post-excisional radiotherapy

    Get PDF
    BACKGROUND: Keloids are common benign tumors of the dermis, typically arising after insult to the skin. While typically only impinging on cosmesis, large or recurrent keloids may require therapeutic intervention. While no single standardized treatment course has been established, several series report excellent outcomes for keloids with post-surgery radiation therapy. CASE PRESENTATION: We present a patient with a history of recurrent keloids arising in the absence of an ascribed trauma and a maternal familial history of keloid formation, whose physical examination several large perineal keloids of 6-20 cm in the largest dimension. The patient was treated with surgical extirpation and adjuvant radiation therapy. Radiotherapy was delivered to the scar bed to a total dose of 22 Gy over 11 daily fractions. Acute radiotherapy toxicity necessitated a treatment break due to RTOG Grade III acute toxicity (moderate ulceration and skin breakdown) which resolved rapidly during a 3-day treatment break. The patient demonstrated local control and has remained free of local recurrence for more than 2 years. CONCLUSION: Radiotherapy for keloids represents a safe and effective option for post-surgical keloid therapy, especially for patients with bulky or recurrent disease

    Are Anticholinergic Symptoms a Risk Factor for Falls in Older General Practice Patients With Polypharmacy?: Study Protocol for the Development and Validation of a Prognostic Model

    Get PDF
    Background: Cumulative anticholinergic exposure, also known as anticholinergic burden, is associated with a variety of adverse outcomes. However, studies show that anticholinergic effects tend to be underestimated by prescribers, and anticholinergics are the most frequently prescribed potentially inappropriate medication in older patients. The grading systems and drugs included in existing scales to quantify anticholinergic burden differ considerably and do not adequately account for patients' susceptibility to medications. Furthermore, their ability to link anticholinergic burden with adverse outcomes such as falls is unclear. This study aims to develop a prognostic model that predicts falls in older general practice patients, to assess the performance of several anticholinergic burden scales, and to quantify the added predictive value of anticholinergic symptoms in this context. Methods: Data from two cluster-randomized controlled trials investigating medication optimization in older general practice patients in Germany will be used. One trial (RIME, n = 1,197) will be used for the model development and the other trial (PRIMUM, n = 502) will be used to externally validate the model. A priori, candidate predictors will be selected based on a literature search, predictor availability, and clinical reasoning. Candidate predictors will include socio-demographics (e.g. age, sex), morbidity (e.g. single conditions), medication (e.g. polypharmacy, anticholinergic burden as defined by scales), and well-being (e.g. quality of life, physical function). A prognostic model including sociodemographic and lifestyle-related factors, as well as variables on morbidity, medication, health status, and well-being, will be developed, whereby the prognostic value of extending the model to include additional patient-reported symptoms will be also assessed. Logistic regression will be used for the binary outcome, which will be defined as "no falls" vs. "≥1 fall" within six months of baseline, as reported in patient interviews. Discussion: As the ability of different anticholinergic burden scales to predict falls in older patients is unclear, this study may provide insights into their relative importance as well as into the overall contribution of anticholinergic symptoms and other patient characteristics. The results may support general practitioners in their clinical decision-making and in prescribing fewer medications with anticholinergic properties

    Scuba:Scalable kernel-based gene prioritization

    Get PDF
    Abstract Background The uncovering of genes linked to human diseases is a pressing challenge in molecular biology and precision medicine. This task is often hindered by the large number of candidate genes and by the heterogeneity of the available information. Computational methods for the prioritization of candidate genes can help to cope with these problems. In particular, kernel-based methods are a powerful resource for the integration of heterogeneous biological knowledge, however, their practical implementation is often precluded by their limited scalability. Results We propose Scuba, a scalable kernel-based method for gene prioritization. It implements a novel multiple kernel learning approach, based on a semi-supervised perspective and on the optimization of the margin distribution. Scuba is optimized to cope with strongly unbalanced settings where known disease genes are few and large scale predictions are required. Importantly, it is able to efficiently deal both with a large amount of candidate genes and with an arbitrary number of data sources. As a direct consequence of scalability, Scuba integrates also a new efficient strategy to select optimal kernel parameters for each data source. We performed cross-validation experiments and simulated a realistic usage setting, showing that Scuba outperforms a wide range of state-of-the-art methods. Conclusions Scuba achieves state-of-the-art performance and has enhanced scalability compared to existing kernel-based approaches for genomic data. This method can be useful to prioritize candidate genes, particularly when their number is large or when input data is highly heterogeneous. The code is freely available at https://github.com/gzampieri/Scuba

    Predicting negative health outcomes in older general practice patients with chronic illness: Rationale and development of the PROPERmed harmonized individual participant data database.

    Get PDF
    The prevalence of multimorbidity and polypharmacy increases significantly with age and are associated with negative health consequences. However, most current interventions to optimize medication have failed to show significant effects on patient-relevant outcomes. This may be due to ineffectiveness of interventions themselves but may also reflect other factors: insufficient sample sizes, heterogeneity of population. To address this issue, the international PROPERmed collaboration was set up to obtain/synthesize individual participant data (IPD) from five cluster-randomized trials. The trials took place in Germany and The Netherlands and aimed to optimize medication in older general practice patients with chronic illness. PROPERmed is the first database of IPD to be drawn from multiple trials in this patient population and setting. It offers the opportunity to derive prognostic models with increased statistical power for prediction of patient-relevant outcomes resulting from the interplay of multimorbidity and polypharmacy. This may help patients from this heterogeneous group to be stratified according to risk and enable clinicians to identify patients that are likely to benefit most from resource/time-intensive interventions. The aim of this manuscript is to describe the rationale behind PROPERmed collaboration, characteristics of the included studies/participants, development of the harmonized IPD database and challenges faced during this process

    Predicting negative health outcomes in older general practice patients with chronic illness: Rationale and development of the PROPERmed harmonized individual participant data database.

    Get PDF
    The prevalence of multimorbidity and polypharmacy increases significantly with age and are associated with negative health consequences. However, most current interventions to optimize medication have failed to show significant effects on patient-relevant outcomes. This may be due to ineffectiveness of interventions themselves but may also reflect other factors: insufficient sample sizes, heterogeneity of population. To address this issue, the international PROPERmed collaboration was set up to obtain/synthesize individual participant data (IPD) from five cluster-randomized trials. The trials took place in Germany and The Netherlands and aimed to optimize medication in older general practice patients with chronic illness. PROPERmed is the first database of IPD to be drawn from multiple trials in this patient population and setting. It offers the opportunity to derive prognostic models with increased statistical power for prediction of patient-relevant outcomes resulting from the interplay of multimorbidity and polypharmacy. This may help patients from this heterogeneous group to be stratified according to risk and enable clinicians to identify patients that are likely to benefit most from resource/time-intensive interventions. The aim of this manuscript is to describe the rationale behind PROPERmed collaboration, characteristics of the included studies/participants, development of the harmonized IPD database and challenges faced during this process

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    A922 Sequential measurement of 1 hour creatinine clearance (1-CRCL) in critically ill patients at risk of acute kidney injury (AKI)

    Get PDF
    Meeting abstrac

    Localization and broadband follow-up of the gravitational-wave transient GW150914

    Get PDF
    A gravitational-wave (GW) transient was identified in data recorded by the Advanced Laser Interferometer Gravitational-wave Observatory (LIGO) detectors on 2015 September 14. The event, initially designated G184098 and later given the name GW150914, is described in detail elsewhere. By prior arrangement, preliminary estimates of the time, significance, and sky location of the event were shared with 63 teams of observers covering radio, optical, near-infrared, X-ray, and gamma-ray wavelengths with ground- and space-based facilities. In this Letter we describe the low-latency analysis of the GW data and present the sky localization of the first observed compact binary merger. We summarize the follow-up observations reported by 25 teams via private Gamma-ray Coordinates Network circulars, giving an overview of the participating facilities, the GW sky localization coverage, the timeline, and depth of the observations. As this event turned out to be a binary black hole merger, there is little expectation of a detectable electromagnetic (EM) signature. Nevertheless, this first broadband campaign to search for a counterpart of an Advanced LIGO source represents a milestone and highlights the broad capabilities of the transient astronomy community and the observing strategies that have been developed to pursue neutron star binary merger events. Detailed investigations of the EM data and results of the EM follow-up campaign are being disseminated in papers by the individual teams
    corecore