2,963 research outputs found

    DATASET FOR POSITIONING AND TRACKING CARS AND PEDESTRIANS FROM UAV IMAGERY AND STATIC LIDAR

    Get PDF
    The development of autonomous vehicles, both terrestrial and aerial ones (unmanned aerial system (UAS)), is causing the need of properly formulating appropriate solutions for ensuring a safe interaction between them, human beings and the infrastructures and environment in their operating area. To such aim, the knowledge of the positions of different platforms moving in the considered area is fundamental. GNSS (Global Navigation Satellite System) is by far the most used positioning technique in order to determine positions all over the world. Nevertheless, there are several conditions in which its use is unfortunately impossible or unreliable. Hence, different techniques, based on the use of sensors either mounted on the moving platforms or on an ad-hoc infrastructure, shall be used in order to determine the absolute and relative positions of the involved platforms. To this aim, this work proposes the use of vision, in particular from UAS imagery, static LiDAR (Light Detection and Ranging) and UWB (Ultra Wide-Band) transceivers, with initial encouraging results

    Ageing test of the ATLAS RPCs at X5-GIF

    Full text link
    An ageing test of three ATLAS production RPC stations is in course at X5-GIF, the CERN irradiation facility. The chamber efficiencies are monitored using cosmic rays triggered by a scintillator hodoscope. Higher statistics measurements are made when the X5 muon beam is available. We report here the measurements of the efficiency versus operating voltage at different source intensities, up to a maximum counting rate of about 700Hz/cm^2. We describe the performance of the chambers during the test up to an overall ageing of 4 ATLAS equivalent years corresponding to an integrated charge of 0.12C/cm^2, including a safety factor of 5.Comment: 4 pages. Presented at the VII Workshop on Resistive Plate Chambers and Related Detectors; Clermont-Ferrand October 20th-22nd, 200

    A Comparison Between Uwb and Laser-based Pedestrian Tracking

    Get PDF
    Despite the availability of GNSS on consumer devices enabled personal navigation for most of the World population in most of the outdoor conditions, the problem of precise pedestrian positioning is still quite challenging when indoors or, more in general, in GNSS-challenging working conditions. Furthermore, the covid-19 pandemic also raised of pedestrian tracking, in any environment, but in particular indoors, where GNSS typically does not ensure sufficient accuracy for checking people distance. Motivated by the mentioned needs, this paper investigates the potential of UWB and LiDAR for pedestrian positioning and tracking. The two methods are compared in an outdoor case study, nevertheless, both are usable indoors as well. The obtained results show that the positioning performance of the LiDAR-based approach overcomes the UWB one, when the pedestrians are not obstructed by other objects in the LiDAR view. Nevertheless, the presence of obstructions causes gaps in the LiDAR-based tracking: instead, the combination of LiDAR and UWB can be used in order to reduce outages in the LiDAR-based solution, whereas the latter, when available, usually improves the UWB-based results.Peer reviewe

    Bosentan treatment for Raynauds phenomenon and skin fibrosis in patients with Systemic Sclerosis and pulmonary arterial hypertension: an open-label, observational, retrospective study.

    Get PDF
    Raynaud's phenomenon (RP) and cutaneous fibrosis are the distinctive manifestations of scleroderma, in which Endothelin-1 plays a fundamental pathogenetic role. Bosentan, an Endothelin-1 receptor antagonist used for the treatment of pulmonary arterial hypertension, retards the beginning of new sclerodermic digital ulcers (DU). This open-label, observational, retrospective study verified the effect of Bosentan on RP and skin fibrosis in sclerodermic outpatients affected by pulmonary arterial hypertension without DU. Fourteen subjects (13 women, 1 man; mean age 60 ± 7.5 years; ten with limited and four with diffuse scleroderma) were observed at baseline (T0) and after four (T1), twelve (T2), twenty-four (T3) and forty-eight (T4) weeks during treatment with Bosentan. They were evaluated for daily quantity and duration of RP attacks and skin thickness (using modified Rodnan total skin score, MRSS). Videocapillaroscopic evaluation was performed at TO and T4. Bosentan decreased significantly the number and duration of RP attacks, beginning at T2 (p<0.05). Videocapillaroscopy showed significant improvement of microcirculatory patterns at T4 (p<0.05). MRSS decreased throughout the study, reaching the statistical significance at T3 and T4 (p<0.01) in the whole cohort. The present data suggest that Bosentan is effective in stabilmng the microcirculation involvement and in improving skin fibrosis irrespective of scleroderma patterns

    Towards a FOSS Automatic Classification of Defects for Bridges Structural Health Monitoring

    Get PDF
    Bridges are among the most important structures of any road network. During their service life, they are subject to deterioration which may reduce their safety and functionality. The detection of bridge damage is necessary for proper maintenance activities. To date, assessing the health status of the bridge and all its elements is carried out by identifying a series of data obtained from visual inspections, which allows the mapping of the deterioration situation of the work and its conservation status. There are, however, situations where visual inspection may be difficult or impossible, especially in critical areas of bridges, such as the ceiling and corners. In this contribution, the authors acquire images using a prototype drone with a low-cost camera mounted upward over the body of the drone. The proposed solution was tested on a bridge in the city of Turin (Italy). The captured data was processed via photogrammetric process using the open-source Micmac solution. Subsequently, a procedure was developed with FOSS tools for the segmentation of the orthophoto of the intrados of the bridge and the automatic classification of some defects found on the analyzed structure. The paper describes the adopted approach showing the effectiveness of the proposed methodology

    System Test of the ATLAS Muon Spectrometer in the H8 Beam at the CERN SPS

    Get PDF
    An extensive system test of the ATLAS muon spectrometer has been performed in the H8 beam line at the CERN SPS during the last four years. This spectrometer will use pressurized Monitored Drift Tube (MDT) chambers and Cathode Strip Chambers (CSC) for precision tracking, Resistive Plate Chambers (RPCs) for triggering in the barrel and Thin Gap Chambers (TGCs) for triggering in the end-cap region. The test set-up emulates one projective tower of the barrel (six MDT chambers and six RPCs) and one end-cap octant (six MDT chambers, A CSC and three TGCs). The barrel and end-cap stands have also been equipped with optical alignment systems, aiming at a relative positioning of the precision chambers in each tower to 30-40 micrometers. In addition to the performance of the detectors and the alignment scheme, many other systems aspects of the ATLAS muon spectrometer have been tested and validated with this setup, such as the mechanical detector integration and installation, the detector control system, the data acquisition, high level trigger software and off-line event reconstruction. Measurements with muon energies ranging from 20 to 300 GeV have allowed measuring the trigger and tracking performance of this set-up, in a configuration very similar to the final spectrometer. A special bunched muon beam with 25 ns bunch spacing, emulating the LHC bunch structure, has been used to study the timing resolution and bunch identification performance of the trigger chambers. The ATLAS first-level trigger chain has been operated with muon trigger signals for the first time

    Measurement of the cross-section and charge asymmetry of WW bosons produced in proton-proton collisions at s=8\sqrt{s}=8 TeV with the ATLAS detector

    Get PDF
    This paper presents measurements of the W+μ+νW^+ \rightarrow \mu^+\nu and WμνW^- \rightarrow \mu^-\nu cross-sections and the associated charge asymmetry as a function of the absolute pseudorapidity of the decay muon. The data were collected in proton--proton collisions at a centre-of-mass energy of 8 TeV with the ATLAS experiment at the LHC and correspond to a total integrated luminosity of 20.2~\mbox{fb^{-1}}. The precision of the cross-section measurements varies between 0.8% to 1.5% as a function of the pseudorapidity, excluding the 1.9% uncertainty on the integrated luminosity. The charge asymmetry is measured with an uncertainty between 0.002 and 0.003. The results are compared with predictions based on next-to-next-to-leading-order calculations with various parton distribution functions and have the sensitivity to discriminate between them.Comment: 38 pages in total, author list starting page 22, 5 figures, 4 tables, submitted to EPJC. All figures including auxiliary figures are available at https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2017-13

    Search for chargino-neutralino production with mass splittings near the electroweak scale in three-lepton final states in √s=13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for supersymmetry through the pair production of electroweakinos with mass splittings near the electroweak scale and decaying via on-shell W and Z bosons is presented for a three-lepton final state. The analyzed proton-proton collision data taken at a center-of-mass energy of √s=13  TeV were collected between 2015 and 2018 by the ATLAS experiment at the Large Hadron Collider, corresponding to an integrated luminosity of 139  fb−1. A search, emulating the recursive jigsaw reconstruction technique with easily reproducible laboratory-frame variables, is performed. The two excesses observed in the 2015–2016 data recursive jigsaw analysis in the low-mass three-lepton phase space are reproduced. Results with the full data set are in agreement with the Standard Model expectations. They are interpreted to set exclusion limits at the 95% confidence level on simplified models of chargino-neutralino pair production for masses up to 345 GeV

    Single hadron response measurement and calorimeter jet energy scale uncertainty with the ATLAS detector at the LHC

    Get PDF
    The uncertainty on the calorimeter energy response to jets of particles is derived for the ATLAS experiment at the Large Hadron Collider (LHC). First, the calorimeter response to single isolated charged hadrons is measured and compared to the Monte Carlo simulation using proton-proton collisions at centre-of-mass energies of sqrt(s) = 900 GeV and 7 TeV collected during 2009 and 2010. Then, using the decay of K_s and Lambda particles, the calorimeter response to specific types of particles (positively and negatively charged pions, protons, and anti-protons) is measured and compared to the Monte Carlo predictions. Finally, the jet energy scale uncertainty is determined by propagating the response uncertainty for single charged and neutral particles to jets. The response uncertainty is 2-5% for central isolated hadrons and 1-3% for the final calorimeter jet energy scale.Comment: 24 pages plus author list (36 pages total), 23 figures, 1 table, submitted to European Physical Journal
    corecore