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Abstract. Bridges are among the most important structures of any road network.
During their service life, they are subject to deterioration which may reduce their
safety and functionality. The detection of bridge damage is necessary for proper
maintenance activities. To date, assessing the health status of the bridge and all
its elements is carried out by identifying a series of data obtained from visual
inspections, which allows the mapping of the deterioration situation of the work
and its conservation status. There are, however, situations where visual inspection
may be difficult or impossible, especially in critical areas of bridges, such as
the ceiling and corners. In this contribution, the authors acquire images using a
prototype drone with a low-cost camera mounted upward over the body of the
drone. The proposed solution was tested on a bridge in the city of Turin (Italy).
The captured data was processed via photogrammetric process using the open-
source Micmac solution. Subsequently, a procedure was developed with FOSS
tools for the segmentation of the orthophoto of the intrados of the bridge and
the automatic classification of some defects found on the analyzed structure. The
paper describes the adopted approach showing the effectiveness of the proposed
methodology.

Keywords: Bridge defect detection - Unmanned aerial vehicles (UAV) - FOSS -
Machine learning - Random forest - OBIA - Photogrammetry - MicMac

1 Introduction

The management of existing bridges is a widespread problem throughout the world. In
Italy and many other countries, bridges are nearing the end of their useful life and show
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significant deterioration conditions. During its life cycle, each infrastructure will face
deterioration depending on several factors such as the natural aging, the execution of
works, the material quality, the planned maintenance, and the environmental condition. In
recent years, many Italian bridges have been affected by severe failures or collapses that
have caused significant economic and human lives losses. The main defects are related
to phenomena of cracking, spalling and delamination, which significantly shorten the
useful life of the bridge and make it more fragile against the traffic on wheels with a
consequent increase of safety-related risks.

The current situation would require in-depth analyses to be carried out on all infras-
tructures in order to assess the actual level of safety, according to current regulations,
and to take appropriate measures. It is a costly procedure in terms of time and money
and the number of infrastructures on which it should be applied is very high, about one
million bridges and viaducts just in Italy. Many of these are of mixed competence, about
30 thousand are managed by local authorities with reduced financial capacity, and as
many as 1,425 viaducts are without an identified owner and manager [1]. The strategic
approach suggested by the decision-making bodies is defining and developing simple
and efficient methods for assessing the structural risk associated with infrastructures
throughout the national territory. These assessments must be carried out following the
classification and identification of deterioration and damage.

To this end, Superior Council of Public Works of the Ministry of Infrastructure and
Transport has issued the “Guidelines for the Classification and Risk Management, Safety
Assessment and Monitoring of Existing Bridges” [2]. They are intended to provide a
procedure for managing the safety of existing bridges in order to prevent inadequate
levels of damage by making the risk acceptable. One of the various aspects described
by the guidelines is the classification of risk by identifying defects following a visual
inspection. The guidelines explain how to identify these issues through photographic
identification, measurement and geometric survey. This lends itself to automation as it
is a well-structured methodology.

This automation has started with the advent of computer vision and machine-learning
techniques, which provides effective tools for automatic analysis and detection of defects
in bridge pictures. Image enhancement, morphological operators, object segmentation
algorithms have been used on images for several years [3—5]. With the technological
development of imaging sensors and the increased amount of data acquired, machine-
learning techniques [6—8] and artificial neural networks [9, 10] have become of great
interest in this field.

A further step forward has been the spread of remotely piloted aircraft, which allowed
georeferenced images of large parts of the infrastructure to be acquired. In the specific
case of bridges, these are generally complicated structures to detect due to limited access
to the structure itself. This often means increased risk for the operators involved in the
inspection procedures, as well as the need to stop traffic, which increases costs. The use of
drones could be a solution to these problems and could also provide an effective tool for
cost saving with respect to traditional techniques [11]. Unmanned Aerial Vehicles (UAV)
have already been used in bridge inspection and also developed in order to acquire those
non-conventional data [12, 13] for documentation. In this scenario, photogrammetric
techniques are effective tools to perform more in-depth analyses: i.e. georeferencing,
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measuring and quantifying defects in bridges. In fact, digital photogrammetry provides
three-dimensional models and metrically accurate solid orthophotos, which could be
used as a rich dataset for machine learning classification techniques [14].

This work aims to automate the procedure by means of geomatic and machine-
learning techniques for the identification and automatic classification of structural defects
in bridges. A UAV was modified for carrying a low-cost camera facing upward in order to
acquire images of the intrados of a bridge. The automatic identification of the defects was
made thorough a semiautomatic object-oriented (OBIA) supervised machine learning
classification. The input data used as training sets were an orthoimage and a digital
surface model results of the photogrammetric processing. All the steps of the work were
made by means of free and open-source software (FOSS).

2 Case Study

The procedure proposed in this contribution was tested on the Stura bridge. The Stura
river is crossed by this 150 m length double bridge, located on the motorway connection
RA10, which allows the communication between Turin and the international airport San-
dro Pertini (Fig. 1). The Stura Bridge is realized with two separated structures, one next
to the other, each one of them corresponding to a direction of travel and 11 m wide. Each
structure has five spans of variable lengths formed by a three main pre-stressed concrete
girder beams system and complemented with squared sections transversal beams.

Turin

Cimitéro
Porta Palazzo 0 Monumentale

Palazzo Reale di Torino Q

a

TOrino VANCHIG
(o]

Fig. 1. Location of the Stura bridge on the RA10, its top and bottom view.

Given its strategic importance, the Stura bridge has been subject to various moni-
toring activities in recent years. Regardless of the nature of the inspection technique,
monitoring the bridge’s intrados is arduous because most of its length crosses the Stura
river, and therefore it is hard to reach. This is especially true for geomatics approaches,
which rely on different instruments. To this purpose, a novelty procedure for realising a
photogrammetric survey with an upward camera installed on a UAV and the automatic
classification of the defects was realized and applied on the second span of the bridge,
35 m long and 22 m wide.
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3 The Methodology

The methodology consists of three macro-steps: data acquisition, data processing and
the visual restitution of the results. It was entirely realized using FOSS (Fig. 2).

Data acquisition - UAV ﬂlght ‘ P
st M

Data processing - Segmentation %
Nz: NumPy
Classification ® teawn
|4 pandas
Results restitution 4 Map CQGIS

Fig. 2. FOSS workflow for the detection of structural damages.

3.1 Data Acquisition

The input data used in this work for the automatic classification of the structural defects
of the bridge was the orthophoto of its intrados. The realization of this product required
a novelty approach, which involved the use of an upward camera installed on a UAV
platform. Typically, the commercial UAV solution integrates a camera gimbal that can
be oriented at an angle of 90°, from zenith to nadiral view. In some cases, where it is
necessary to inspect particular structures that cannot be observed and analysed effectively
with other instruments, such as the intrados of a bridge, the possibility of exploiting an
upward tilt can be decisive.

For the survey, a common Dji Phantom 4 aircraft was used. The quadrotor has a
flight autonomy of about 20 min and a maximum upward orientation of the camera
of 30°, which is insufficient for the complete photogrammetric reconstruction of the
intrados. For this purpose, the UAV was equipped with a Raspberry Pi Camera Module
2 connected and managed by a Raspberry Pi (RPi) 3 system (Fig. 3). The advantage of
this solution is the limited cost (<60 euro), their light weight and their simplicity to be
used and embedded. Moreover, the RPi system can be exploited to control and process
data collected from other sensors, such as inertial platforms and GNSS receivers, in
order to perform the direct photogrammetry, where environmental conditions allow it
[15].
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Fig. 3. The photogrammetric system integration composed of the Raspberry Pi Camera Module
V2 (in green), the Raspberry Pi 3 (in blue) and the power-bank (in red). (Color figure online)

A power-bank with 5000 mAh capacity was connected to the RPi, guaranteeing
the autonomy of about 7 h. The devices were fixed with some cable ties to the camera
gimble clamp of the drone and a support for a particular optical sensor (not used in
this study) so as not to unbalance the platform. The total weight of the devices and the
mounting components amounted to about 220 g. The RPi RGB camera module was
installed upwards on the UAV to capture images with an orientation of 45° with respect
to the zenith view. This camera sensor has an 8 MP resolution, but, for this study, a video
recording at a lower resolution was set (1029 x 702 pixel) in order to automatically
acquire images with a higher frame rate (2 fps) and ensure sufficient overlap between
consecutive frames. To this purpose, a specific application in Python was developed
to set the images acquisition with RPi camera and to store them automatically on an
SD card inside the RPi. The application can be launched before the start of the flight.
Due to the lack of GNSS signal, the flight was manually performed. In order to cover
the entire study area, a flight path, at a distance of about five meters from the intrados,
was followed, consisting of five survey lines corresponding to the spans of the bridge,
each travelled in both directions. Table 1 summarizes the flight plan parameters and the
characteristics of the acquired data.
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Table 1. Flight plan parameters

Number of images 498

Flying altitude 529 m
Ground resolution 6.6 mm/pix
Image resolution 1024 x 720

As the external orientation of the images was unknown, external markers and pho-
togrammetric points, easily identifiable on the images, were used as Ground Control
Points (GCPs) to reference the model and to predict its accuracy. Therefore, the first
step of the survey involved the construction of a topographic network composed of
six vertices. Two vertices, identifying the primary network, were surveyed through a
GNSS Leica GS-18 double frequency and multi-constellation receiver in static modal-
ity, standing on each point for about 1 h. The coordinates have been estimated considering
a single-base solution (through the Leica Geo Office® software v.8.4) with the Torino
permanent station of CORSs (Continuous Operating Reference Stations) network by
Piedmont district, with an accuracy of about 3 mm.

Starting from this reference network, it was possible to acquire the position of four
other points materialized on the ground under the bridge using a Leica MS-50 total
station and a prism. The position of three artificial markers and of ten photogrammetric
points spread on the intrados was measured from the station points of the topographic
network and adjusted with the MicroSurvey StarNet v.7.0 software in order to obtain the
final coordinates: the root mean square (RMS) of the estimated coordinates was lower
than 1 cm.

4 Data Processing

The data processing regards the reconstruction of the orthophoto of the bridge’s intrados
and the supervised machine learning classification of the damages of the structure.

4.1 Photogrammetric Data Processing

Photogrammetric processing allows reconstructing of different scenarios from a set of
images acquired from different points of view in the form of 3D digital model and
ortho-imagery of the surveyed area. In order to maintain the FOSS approach, the free
open-source photogrammetric suite MicMac (Multi-Images Correspondances, Meth-
odes Automatiques de Correlation) from the French National Geographic Institute (IGN)
[16, 17] has been used. The first step of the point cloud reconstruction is the identification
of relevant features visible in multiple images, which is performed with the well-known
SIFT algorithm [18]. Thanks to these common features, the position of the camera centre
and the calibration parameters are computed. The MicMac libraries use the Structure
from Motion procedure in order to accurately reconstruct the scene, generating the dense
point cloud from which the digital elevation model (DEM) and the orthomosaic map
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are extracted. All these steps are applied by running sequentially five libraries: Tapi-
oca, Tapas, Malt, Nuage2Ply and Tawny. During the process, some known reference
points measured with a Total Station has been used to scale and georeference the model
(GPSBascule tool). An optimization procedure which minimizes the coordinate errors
is performed by Campari tool and the overall discrepancies between the reference coor-
dinates and the estimated ones are reported in Table 2. From this procedure a DEM with
resolution of 2.5 cm and an orthophoto with resolution of 0.6 cm have been extracted.

Table 2. Overall RMSE of the photogrammetric points on the intrados measured with the total
station.

RMSE East RMSE North RMSE Up
7.27 mm 3.38 mm 5.68 mm

4.2 Damage Classification

The damages were identified thorough a semiautomatic object-oriented (OBIA) super-
vised machine learning classification.

In the Very High Resolution (VHR) image classification realm, the OBIA approach
dominancy is undiscussed. Ontologically, OBIA allows the identification and extraction
of real-world features more accurately than pixel-based solutions and reliably from
remotely sensed data only on more appropriate scales [19].

The OBIA classification is generally organized in six steps [20]:

Segmentation;

Features extraction and data preparation;
Training and validation datasets generation;
Classification algorithm;

Feature selection;

Validation of the classification.

e a0 o

The segmentation is the core process of OBIA, and several steps generally charac-
terize it. Starting with individual pixels, OBIA algorithms merge contiguous pixels into
groups (i.e., objects) based on three parameters: scale, shape, and compactness [20-22].
The objects should represent the classification features of interest (i.e. structural damages
and non-damaged areas) [19]. The scale represents the degree of spectral heterogeneity
allowed in each object. Generally, the higher the scale value (that is unitless), and larger
the object will be because it is more heterogeneous [19, 22]. The compactness can be
defined as the degree of similarity of a polygon to a circumference. The compactness
parameter optimizes the resulting objects regarding the compactness.
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The segmentation was realised on three-dimensional information of visible spectral
information imagery using ORFEO toolbox [23], an open-source library for remote
sensing application. The ORFEO project was funded in 2006 by the French space agency
and it has rapidly evolved into a reliable toolbox for remote sensing practitioners. The
OTB Large-Scale Mean-Shift segmentation workflow (LSMS) was applied [24]. First,
the Red-Green-Blue image was smoothed with a range radius of 10 and a spatial radius
of 2. Then the smoothed dataset was segmented using LSMS segmentation algorithm,
with 2 as spatial radius and 5 as range radius. The LSMS Small region merging algorithm
allowed the merging the smallest segments by setting the minimum segment size (i.e.
100). Finally, the segmentation was vectorised using the LSMS vectorization algorithm.

Effective use of features as input data for a classification procedure can improve clas-
sification accuracy [20, 25, 26]. Thus, the classification dataset was enriched with deriva-
tive features, namely, spectral-, textural-, and statistical-based features. The extraction
of features was based on the literature classification research [27-32] and the authors’
personal experience. Since the OBIA approach allows the analyst to introduce into the
classification model features regarding the segmented objects’ geometric characteristics
and their relationship with the neighbourhood’s objects, the shape, the extent and the
compactness of the segments were computed too. 156 features were computed for each
object. Table 3 reports the used measures for segmentation and classification. For each
segment were computed the mean, the standard deviation, the median, the variance, the
skewness and the kurtosis of spectral, histogram and textural features of Table 3.

Five classes describe the existing damages over the study area: Drainage; uncovered
metal bar (UMB); Oxidized rebar (OR); Non-damaged intrados; and Non-damaged
beam (Table 4). For each class were visually identified 100 segments to be used as
training and test (70% training — 30% test). Reaching 100 samples was not always
possible since some classes are more frequent (in terms of area coverage) than others, and
some other classes, although covering large areas, are spectrally homogeneous and thus
described by large segments. This lead to small and unbalanced training datasets that can
negatively affect the classification results. Thus, the training dataset was oversampled in
Python environment. The oversampling [34] creates synthetic samples by interpolation
of the feature values of the nearest neighbours. The Synthetic Minority Oversampling
Technique (SMOTE) was applied considering the 6 nearest neighbour samples (n) to
reach the largest available class (100 samples of Drainage). The final training dataset was
composed of 500 samples. Then, data were scaled according to each feature minimum-
maximum values.

The classification was performed in Python environment using Pandas, NumPy and
Sklearn libraries. Random Forest classification [35] model was trained using the smoted
dataset. One-thousand trees with Gini criterion for the node splitting were used. The
Random Forest algorithm can compute the Gini gain of each feature [36]. A simplified
description of the GINI gain defines it as the sum of impurity decreases from two nodes
and the parent node. The GINI is calculated for each variable of the classifier. This
parameter is a proxy of the importance of each feature within the model: the variables
that have high GINI gain (so they have less impurity) are more important. Features that
have GINI importance less than the median values of the feature importance values were
excluded from the classification.
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Table 3. Features selected for the classification input dataset. They were computed using ORFEO
toolbox.

Category Features

Spectral-based Color Index

Statistical-based Variance
Over the GREEN band
In 5 x 5 neighbourhood

Mean

Skewness

Kurtosis

Grey level co-occurrence matrix Mean
measures

Over the GREEN band
In 5 x 5 neighbourhood
[33] Sum Average

Variance

Dissimilarity

Sum Variance

Sum Entropy

Difference of Entropies

Difference of Variances

Image Correlation 1

Image Correlation 2

Energy

Entropy

Correlation

Inverse Difference Moment

Inertia
Cluster Shade

Cluster Prominence

Haralick Correlation

Elevation Digital Elevation Model

Geometric Extension (Number of Pixels)
Flat

Roundness

Longness

Perimeter
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Table 4. Classes of the model.
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Class

Description

Drainage

Area of the bridge that have
evidence of present, or past,
drainage

Uncovered metal bar (UMB)

Metal bars of the beam that are
not covered by concrete rebar

Oxidized rebar (OR)

The concrete covering the bars
with a evident oxidation process
going on, thus, potentially
evolving in Uncovered metal bars

Non-damaged intrados

No evidence of damages

Non-damaged beams

No evidence of damages

The classification model was assessed using cross-validation approach. The cross-
validation splits the test dataset in k folds of equal size and test the k-model on each fold.
Since the test dataset is small (i.e. only 30 samples per class), the Leave-One-Out cross-
validation (LOOCYV) algorithm was applied [37, 38]. The LOOCYV is a k-fold method
where the number of folds is equal to the number of test samples. Thus, each fold’s has
only one test sample. In the case of correct classification, the fold validation is 1, and
it is 0 in the case of wrong classified test samples. The assessment of the results is the
mean of the assessment measures calculated on each fold. The precision, the Recall, and
the F1-score were computed. It is important mentioning that the SMOTE was applied

inside the LOOCYV cycle.
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5 Results and Discussion

The segmentation resulted in 8068 segments characterised by 156 feature each. Figure 4
provides the visual restitution of the classification. The feature selection reduces the
input classification variables from 156 to 74 without losing in accuracy. Indeed the
overall accuracy of the model moved from 0.816 (without feature selection) to 0.819
(with feature selection). Table 5 reports the Fl-score, Precision and Recall values of
each class.

Table 5. Accuracy metrics calculated with LOOCV.

Metric Uncovered | Drainage | Oxidized rebar | Non-damaged | Non-damaged
metal bar (OR) intrados beam
(UMB)
Fl-score |0.846 0.938 0.602 0.770 0.792
Precision | 0.860 0.929 0.676 0.731 0.776
Recall 0.831 0.948 0.543 0.814 0.809

The classification is well-performant in almost all the classes. Indeed, the F1-score
is never below 0.750, except for the Oxidized rebar class. The latter provides the lowest
accuracy; the Fl-score is only 0.602. This aspect is quite interesting since there should
be a clear difference over the Red band of the orthophoto. Nevertheless, within the
damages classification, OR class less affects the infrastructure’s stability. Precision and
recall measures mirror the F1-score and are quite well balanced. The Recall value of class
OR relates to a high false-negative rate. The non-damaged areas class shows opposite
behaviour with respect to OR. The Recall is high, indicating a low number of false
positive, but the precision is relatively low relating to high false positive.

It should be noted that in the specific case of the bridge intrados, the final result of
the classification could be influenced by environmental lighting conditions. The limited
illumination that characterizes this area of the infrastructure, influences both the recon-
struction of the photogrammetric block and therefore the accuracy of the final model, as
well as the radiometric values of the orthophoto, causing a loss of accuracy in the result
of the classification procedure.
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B Uncovered Metal Bars
[]Drainage

[ Oxidized rebar

B Non-damaged bars
[]Non-damaged intrados

Fig. 4. Result of the classification.

6 Conclusion

This study has proposed an automatic approach for the detection of bridge defects as
support for managing the safety of existing bridges in order to prevent inadequate levels
of damage. The approach is intended to follow the directives of the Italian Ministry of
Infrastructure and Transport, expressed in the “Guidelines for the Classification and Risk
Management, Safety Assessment and Monitoring of Existing Bridges”. Nevertheless, the
procedure can be extended for defect classification of bridges worldwide. In particular,
the intent of this work is to check the potential of FOSS-focused unconventional pho-
togrammetry for the classification of infrastructures’ damages. A commercial UAV has
been modified with a low-cost imaging sensor managed by an opensource environment
to acquire images of the intrados of a bridge. Those images have been processed in an
open-source photogrammetric suite to extract an orthomosaic map and a digital surface
model. Again, open source libraries for remote sensing image processing has been used
to perform supervised classification. Uncovered metal bar, Drainage, oxidized rebar,
non-damaged intrados and non-damaged beam has been classified with good results and
metrics.

Although the application resulted in accurate results, they can be further improved by
enlarging the input dataset by using sensors sensitive to infrared light. Additional studies
should explore the possibility of spectral calibration to ensure the model’s replicability.
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