1,974 research outputs found

    The Association of Left Ventricular Hypertrophy with Metabolic Syndrome is Dependent on Body Mass Index in Hypertensive Overweight or Obese Patients

    Get PDF
    Overweight (Ow) and obesity (Ob) influence blood pressure (BP) and left ventricular hypertrophy (LVH). It is unclear whether the presence of metabolic syndrome (MetS) independently affects echocardiographic parameters in hypertension.380 Ow/Ob essential hypertensive patients (age ≤ 65 years) presenting for referred BP control-related problems. MetS was defined according to NCEP III/ATP with AHA modifications and LVH as LVM/h(2.7) ≥ 49.2 g/m(2.7) in males and ≥ 46.7 g/m(2.7) in females. Treatment intensity score (TIS) was used to control for BP treatment as previously reported.Hypertensive patients with MetS had significantly higher BMI, systolic and mean BP, interventricular septum and relative wall thickness and lower ejection fraction than those without MetS. LVM/h(2.7) was significantly higher in MetS patients (59.14 ± 14.97 vs. 55.33 ± 14.69 g/m(2.7); p = 0.022). Hypertensive patients with MetS had a 2.3-fold higher risk to have LVH/h(2.7) after adjustment for age, SBP and TIS (OR 2.34; 95%CI 1.40-3.92; p = 0.001), but MetS lost its independent relationship with LVH when BMI was included in the model.In Ow/Ob hypertensive patients MetS maintains its role of risk factor for LVH independently of age, SBP, and TIS, resulting in a useful predictor of target organ damage in clinical practice. However, MetS loses its independent relationship when BMI is taken into account, suggesting that the effects on MetS on LV parameters are mainly driven by the degree of adiposity

    Evidence for the 125 GeV Higgs boson decaying to a pair of tau leptons

    Get PDF
    Peer reviewe

    Search for massive resonances decaying in to WW,WZ or ZZ bosons in proton-proton collisions at root s=13 TeV

    Get PDF
    Peer reviewe

    CMS physics technical design report : Addendum on high density QCD with heavy ions

    Get PDF
    Peer reviewe

    Description and performance of track and primary-vertex reconstruction with the CMS tracker

    Get PDF
    A description is provided of the software algorithms developed for the CMS tracker both for reconstructing charged-particle trajectories in proton-proton interactions and for using the resulting tracks to estimate the positions of the LHC luminous region and individual primary-interaction vertices. Despite the very hostile environment at the LHC, the performance obtained with these algorithms is found to be excellent. For tbar t events under typical 2011 pileup conditions, the average track-reconstruction efficiency for promptly-produced charged particles with transverse momenta of pT > 0.9GeV is 94% for pseudorapidities of |η| < 0.9 and 85% for 0.9 < |η| < 2.5. The inefficiency is caused mainly by hadrons that undergo nuclear interactions in the tracker material. For isolated muons, the corresponding efficiencies are essentially 100%. For isolated muons of pT = 100GeV emitted at |η| < 1.4, the resolutions are approximately 2.8% in pT, and respectively, 10μm and 30μm in the transverse and longitudinal impact parameters. The position resolution achieved for reconstructed primary vertices that correspond to interesting pp collisions is 10–12μm in each of the three spatial dimensions. The tracking and vertexing software is fast and flexible, and easily adaptable to other functions, such as fast tracking for the trigger, or dedicated tracking for electrons that takes into account bremsstrahlung

    Search for long-lived charged particles in proton-proton collisions at root s=13 TeV

    Get PDF
    Peer reviewe

    Measurement of prompt and nonprompt J/psi production in pp and pPb collisions at root s(NN)=5.02 TeV

    Get PDF
    Peer reviewe

    Measurement of the B-s(0) ->mu(+)mu(-) branching fraction and search for B-0 -> mu(+)mu(-) with the CMS experiment

    Get PDF
    The article is the pre-print version of the final publishing paper that is available from the link below.Results are presented from a search for the rare decays B0s → m+m- and B0 →m+m- in pp collisions at at √s = 7 and 8 TeV, with data samples corresponding to integrated luminosities of 5 and 20 fb-1, respectively, collected by the CMS experiment at the LHC. An unbinned maximum-likelihood fit to the dimuon invariant mass distribution gives a branching fraction B(B0s→m+m-) = (3.0 +1.0-0.9) x 10-9, where the uncertainty includes both statistical and systematic contributions. An excess of B0s → m+m- events with respect to background is observed with a significance of 4.3 standard deviations. For the decay B0 → m+m- an upper limit of B(B0→m+m-) < 1.1 x 10-9 at the 95% confidence level is determined. Both results are in agreement with the expectations from the standard model

    Search for gluino mediated bottom- and top-squark production in multijet final states in pp collisions at 8 TeV

    Get PDF

    Alignment of the CMS muon system with cosmic-ray and beam-halo muons

    Get PDF
    This is the Pre-print version of the Article. The official published version of the Paper can be accessed from the link below - Copyright @ 2010 IOPThe CMS muon system has been aligned using cosmic-ray muons collected in 2008 and beam-halo muons from the 2008 LHC circulating beam tests. After alignment, the resolution of the most sensitive coordinate is 80 microns for the relative positions of superlayers in the same barrel chamber and 270 microns for the relative positions of endcap chambers in the same ring structure. The resolution on the position of the central barrel chambers relative to the tracker is comprised between two extreme estimates, 200 and 700 microns, provided by two complementary studies. With minor modifications, the alignment procedures can be applied using muons from LHC collisions, leading to additional significant improvements.This work is supported by FMSR (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); Academy of Sciences and NICPB (Estonia); Academy of Finland, ME, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); PAEC (Pakistan); SCSR (Poland); FCT (Portugal); JINR(Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MST and MAE (Russia); MSTDS (Serbia); MICINN and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (United Kingdom); DOE and NSF (USA)
    • …
    corecore