103 research outputs found

    Aerothermodynamic Analysis of a Reentry Brazilian Satellite

    Full text link
    This work deals with a computational investigation on the small ballistic reentry Brazilian vehicle SARA (acronyms for SAt\'elite de Reentrada Atmosf\'erica). Hypersonic flows over the vehicle SARA at zero-degree angle of attack in a chemical equilibrium and thermal non-equilibrium are modeled by the Direct Simulation Monte Carlo (DSMC) method, which has become the main technique for studying complex multidimensional rarefied flows, and that properly accounts for the non-equilibrium aspects of the flows. The emphasis of this paper is to examine the behavior of the primary properties during the high altitude portion of SARA reentry. In this way, velocity, density, pressure and temperature field are investigated for altitudes of 100, 95, 90, 85 and 80 km. In addition, comparisons based on geometry are made between axisymmetric and planar two-dimensional configurations. Some significant differences between these configurations were noted on the flowfield structure in the reentry trajectory. The analysis showed that the flow disturbances have different influence on velocity, density, pressure and temperature along the stagnation streamline ahead of the capsule nose. It was found that the stagnation region is a thermally stressed zone. It was also found that the stagnation region is a zone of strong compression, high wall pressure. Wall pressure distributions are compared with those of available experimental data and good agreement is found along the spherical nose for the altitude range investigated.Comment: The paper will be published in Vol. 42 of the Brazilian Journal of Physic

    Recent Advances in the Design and Application of Shoulder Arthroplasty Implant Systems and Their Impact on Clinical Outcomes: A Comprehensive Review

    Get PDF
    John Twomey-Kozak, Kwabena Adu-Kwarteng,* Kiera Lunn,* Damon Vernon Briggs, Eoghan Hurley, Oke A Anakwenze, Christopher S Klifto Department of Orthopaedic Surgery, Duke University Medical Center, Durham, NC, USA*These authors contributed equally to this workCorrespondence: John Twomey-Kozak, Duke University Medical Center, Department of Orthopaedic Surgery, Durham, NC, USA, Email [email protected] of Review: This narrative review comprehensively aims to analyze recent advancements in shoulder arthroplasty, focusing on implant systems and their impact on patient outcomes. The purpose is to provide a nuanced understanding of the evolving landscape in shoulder arthroplasty, incorporating scientific, regulatory, and ethical dimensions.Recent Findings: The review synthesizes recent literature on stemless implants, augmented glenoid components, inlay vs onlay configurations, convertible stems, and associated complications. Notable findings include improved patient-reported outcomes with stemless implants, variations in outcomes between inlay and onlay configurations, and the potential advantages of convertible stems. Additionally, the regulatory landscape, particularly the FDA’s 510(k) pathway, is explored alongside ethical considerations, emphasizing the need for standardized international regulations.Summary: Recent innovations in shoulder arthroplasty showcase promising advancements, with stemless implants demonstrating improved patient outcomes. The review underscores the necessity for ongoing research to address unresolved aspects and highlights the importance of a standardized regulatory framework to ensure patient safety globally. The synthesis of recent findings contributes to a comprehensive understanding of the current state of shoulder arthroplasty, guiding future research and clinical practices.Keywords: shoulder arthroplasty, rTSA, stemless implants, glenoid components, patient outcomes, innovations in arthroplast

    Geometry-controlled kinetics

    Full text link
    It has long been appreciated that transport properties can control reaction kinetics. This effect can be characterized by the time it takes a diffusing molecule to reach a target -- the first-passage time (FPT). Although essential to quantify the kinetics of reactions on all time scales, determining the FPT distribution was deemed so far intractable. Here, we calculate analytically this FPT distribution and show that transport processes as various as regular diffusion, anomalous diffusion, diffusion in disordered media and in fractals fall into the same universality classes. Beyond this theoretical aspect, this result changes the views on standard reaction kinetics. More precisely, we argue that geometry can become a key parameter so far ignored in this context, and introduce the concept of "geometry-controlled kinetics". These findings could help understand the crucial role of spatial organization of genes in transcription kinetics, and more generally the impact of geometry on diffusion-limited reactions.Comment: Submitted versio

    Novel Escape Mutants Suggest an Extensive TRIM5α Binding Site Spanning the Entire Outer Surface of the Murine Leukemia Virus Capsid Protein

    Get PDF
    After entry into target cells, retroviruses encounter the host restriction factors such as Fv1 and TRIM5α. While it is clear that these factors target retrovirus capsid proteins (CA), recognition remains poorly defined in the absence of structural information. To better understand the binding interaction between TRIM5α and CA, we selected a panel of novel N-tropic murine leukaemia virus (N-MLV) escape mutants by a serial passage of replication competent N-MLV in rhesus macaque TRIM5α (rhTRIM5α)-positive cells using a small percentage of unrestricted cells to allow multiple rounds of virus replication. The newly identified mutations, many of which involve changes in charge, are distributed over the outer ‘top’ surface of N-MLV CA, including the N-terminal ÎČ-hairpin, and map up to 29 Ao apart. Biological characterisation with a number of restriction factors revealed that only one of the new mutations affects restriction by human TRIM5α, indicating significant differences in the binding interaction between N-MLV and the two TRIM5αs, whereas three of the mutations result in dual sensitivity to Fv1n and Fv1b. Structural studies of two mutants show that no major changes in the overall CA conformation are associated with escape from restriction. We conclude that interactions involving much, if not all, of the surface of CA are vital for TRIM5α binding

    Prognostic value of early, conventional proton magnetic resonance spectroscopy in cooled asphyxiated infants

    Get PDF
    BACKGROUND: Neonatal hypoxic-ischemic encephalopathy (HIE) commonly leads to neurodevelopmental impairment, raising the need for prognostic tools which may guide future therapies in time. Prognostic value of proton MR spectroscopy (H-MRS) between 1 and 46 days of age has been extensively studied; however, the reproducibility and generalizability of these methods are controversial in a general clinical setting. Therefore, we investigated the prognostic performance of conventional H-MRS during first 96 postnatal hours in hypothermia-treated asphyxiated neonates. METHODS: Fifty-one consecutive hypothermia-treated HIE neonates were examined by H-MRS at three echo-times (TE = 35, 144, 288 ms) between 6 and 96 h of age, depending on clinical stability. Patients were divided into favorable (n = 35) and unfavorable (n = 16) outcome groups based on psychomotor and mental developmental index (PDI and MDI, Bayley Scales of Infant Development II) scores (>/= 70 versus < 70 or death, respectively), assessed at 18-26 months of age. Associations between 36 routinely measured metabolite ratios and outcome were studied. Age-dependency of metabolite ratios in whole patient population was assessed. Prognostic performance of metabolite ratios was evaluated by Receiver Operating Characteristics (ROC) analysis. RESULTS: Three metabolite ratios showed significant difference between outcome groups after correction for multiple testing (p < 0.0014): myo-inositol (mIns)/N-acetyl-aspartate (NAA) height, mIns/creatine (Cr) height, both at TE = 35 ms, and NAA/Cr height at TE = 144 ms. Assessment of age-dependency showed that all 3 metabolite ratios (mIns/NAA, NAA/Cr and mIns/Cr) stayed constant during first 96 postnatal hours, rendering them optimal for prediction. ROC analysis revealed that mIns/NAA gives better prediction for outcome than NAA/Cr and mIns/Cr with cut-off values 0.6798 0.6274 and 0.7798, respectively, (AUC 0.9084, 0.8396 and 0.8462, respectively, p < 0.00001); mIns/NAA had the highest specificity (95.24%) and sensitivity (84.62%) for predicting outcome of neonates with HIE any time during the first 96 postnatal hours. CONCLUSIONS: Our findings suggest that during first 96 h of age even conventional H-MRS could be a useful prognostic tool in predicting the outcome of asphyxiated neonates; mIns/NAA was found to be the best and age-independent predictor

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    Gravitational Waves and Gamma-Rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A

    Get PDF
    On 2017 August 17, the gravitational-wave event GW170817 was observed by the Advanced LIGO and Virgo detectors, and the gamma-ray burst (GRB) GRB 170817A was observed independently by the Fermi Gamma-ray Burst Monitor, and the Anti-Coincidence Shield for the Spectrometer for the International Gamma-Ray Astrophysics Laboratory. The probability of the near-simultaneous temporal and spatial observation of GRB 170817A and GW170817 occurring by chance is 5.0×10−85.0\times {10}^{-8}. We therefore confirm binary neutron star mergers as a progenitor of short GRBs. The association of GW170817 and GRB 170817A provides new insight into fundamental physics and the origin of short GRBs. We use the observed time delay of (+1.74±0.05) s(+1.74\pm 0.05)\,{\rm{s}} between GRB 170817A and GW170817 to: (i) constrain the difference between the speed of gravity and the speed of light to be between −3×10−15-3\times {10}^{-15} and +7×10−16+7\times {10}^{-16} times the speed of light, (ii) place new bounds on the violation of Lorentz invariance, (iii) present a new test of the equivalence principle by constraining the Shapiro delay between gravitational and electromagnetic radiation. We also use the time delay to constrain the size and bulk Lorentz factor of the region emitting the gamma-rays. GRB 170817A is the closest short GRB with a known distance, but is between 2 and 6 orders of magnitude less energetic than other bursts with measured redshift. A new generation of gamma-ray detectors, and subthreshold searches in existing detectors, will be essential to detect similar short bursts at greater distances. Finally, we predict a joint detection rate for the Fermi Gamma-ray Burst Monitor and the Advanced LIGO and Virgo detectors of 0.1-1.4 per year during the 2018-2019 observing run and 0.3-1.7 per year at design sensitivity

    Search for gravitational waves from Scorpius X-1 in the second Advanced LIGO observing run with an improved hidden Markov model

    Get PDF
    We present results from a semicoherent search for continuous gravitational waves from the low-mass x-ray binary Scorpius X-1, using a hidden Markov model (HMM) to track spin wandering. This search improves on previous HMM-based searches of LIGO data by using an improved frequency domain matched filter, the J-statistic, and by analyzing data from Advanced LIGO's second observing run. In the frequency range searched, from 60 to 650 Hz, we find no evidence of gravitational radiation. At 194.6 Hz, the most sensitive search frequency, we report an upper limit on gravitational wave strain (at 95% confidence) of h095%=3.47×10-25 when marginalizing over source inclination angle. This is the most sensitive search for Scorpius X-1, to date, that is specifically designed to be robust in the presence of spin wandering. © 2019 American Physical Society

    Search for gravitational waves from Scorpius X-1 in the second Advanced LIGO observing run with an improved hidden Markov model

    Get PDF
    We present results from a semicoherent search for continuous gravitational waves from the low-mass x-ray binary Scorpius X-1, using a hidden Markov model (HMM) to track spin wandering. This search improves on previous HMM-based searches of LIGO data by using an improved frequency domain matched filter, the J-statistic, and by analyzing data from Advanced LIGO’s second observing run. In the frequency range searched, from 60 to 650 Hz, we find no evidence of gravitational radiation. At 194.6 Hz, the most sensitive search frequency, we report an upper limit on gravitational wave strain (at 95% confidence) of h95%0=3.47×10−25 when marginalizing over source inclination angle. This is the most sensitive search for Scorpius X-1, to date, that is specifically designed to be robust in the presence of spin wandering
    • 

    corecore