134 research outputs found

    Synergistic Binding of bHLH Transcription Factors to the Promoter of the Maize NADP-ME Gene Used in C4 Photosynthesis Is Based on an Ancient Code Found in the Ancestral C3 State.

    Get PDF
    C4 photosynthesis has evolved repeatedly from the ancestral C3 state to generate a carbon concentrating mechanism that increases photosynthetic efficiency. This specialized form of photosynthesis is particularly common in the PACMAD clade of grasses, and is used by many of the world's most productive crops. The C4 cycle is accomplished through cell-type-specific accumulation of enzymes but cis-elements and transcription factors controlling C4 photosynthesis remain largely unknown. Using the NADP-Malic Enzyme (NADP-ME) gene as a model we tested whether mechanisms impacting on transcription in C4 plants evolved from ancestral components found in C3 species. Two basic Helix-Loop-Helix (bHLH) transcription factors, ZmbHLH128 and ZmbHLH129, were shown to bind the C4NADP-ME promoter from maize. These proteins form heterodimers and ZmbHLH129 impairs trans-activation by ZmbHLH128. Electrophoretic mobility shift assays indicate that a pair of cis-elements separated by a seven base pair spacer synergistically bind either ZmbHLH128 or ZmbHLH129. This pair of cis-elements is found in both C3 and C4 Panicoid grass species of the PACMAD clade. Our analysis is consistent with this cis-element pair originating from a single motif present in the ancestral C3 state. We conclude that C4 photosynthesis has co-opted an ancient C3 regulatory code built on G-box recognition by bHLH to regulate the NADP-ME gene. More broadly, our findings also contribute to the understanding of gene regulatory networks controlling C4 photosynthesis

    OsRMC, a negative regulator of salt stress response in rice, is regulated by two AP2/ERF transcription factors

    Get PDF
    17 pags., 8 Figs.High salinity causes remarkable losses in rice productivity worldwide mainly because it inhibits growth and reduces grain yield. To cope with environmental changes, plants evolved several adaptive mechanisms, which involve the regulation of many stress-responsive genes. Among these, we have chosen OsRMC to study its transcriptional regulation in rice seedlings subjected to high salinity. Its transcription was highly induced by salt treatment and showed a stress-dose-dependent pattern. OsRMC encodes a receptor-like kinase described as a negative regulator of salt stress responses in rice. To investigate how OsRMC is regulated in response to high salinity, a salt-induced rice cDNA expression library was constructed and subsequently screened using the yeast one-hybrid system and the OsRMC promoter as bait. Thereby, two transcription factors (TFs), OsEREBP1 and OsEREBP2, belonging to the AP2/ERF family were identified. Both TFs were shown to bind to the same GCC-like DNA motif in OsRMC promoter and to negatively regulate its gene expression. The identified TFs were characterized regarding their gene expression under different abiotic stress conditions. This study revealed that OsEREBP1 transcript level is not significantly affected by salt, ABA or severe cold (5 °C) and is only slightly regulated by drought and moderate cold. On the other hand, the OsEREBP2 transcript level increased after cold, ABA, drought and high salinity treatments, indicating that OsEREBP2 may play a central role mediating the response to different abiotic stresses. Gene expression analysis in rice varieties with contrasting salt tolerance further suggests that OsEREBP2 is involved in salt stress response in rice.This work was supported by Fundação para a Ciência e a Tecnologia (FCT) through national funds allocated to research projects [POCI/BIA-BCM/56063/2004 and PTDC/BIA-BCM/099836/2008] and PhD scholarships [SFRH/BD/31011/2006 to TS, SFRH/BD/29258/2006 to DF, SFRH/BD/74946/2010 to AC, SFRH/BD/65229/2009 to DA, SFRH/BPD/34943/2007 to TL]. NS and IA were supported by Programa Ciência 2007, financed by POPH (QREN). AS and BCM work was supported by funding from Programa Euroinvestigación 2008 [EUI2008-03612].Peer reviewe

    Global priority areas for ecosystem restoration

    Get PDF
    Extensive ecosystem restoration is increasingly seen as being central to conserving biodiversity1 and stabilizing the climate of the Earth2. Although ambitious national and global targets have been set, global priority areas that account for spatial variation in benefits and costs have yet to be identified. Here we develop and apply a multicriteria optimization approach that identifies priority areas for restoration across all terrestrial biomes, and estimates their benefits and costs. We find that restoring 15% of converted lands in priority areas could avoid 60% of expected extinctions while sequestering 299 gigatonnes of CO2—30% of the total CO2 increase in the atmosphere since the Industrial Revolution. The inclusion of several biomes is key to achieving multiple benefits. Cost effectiveness can increase up to 13-fold when spatial allocation is optimized using our multicriteria approach, which highlights the importance of spatial planning. Our results confirm the vast potential contributions of restoration to addressing global challenges, while underscoring the necessity of pursuing these goals synergistically.Fil: Strassburg, Bernardo B. N.. Pontifícia Universidade Católica do Rio de Janeiro; Brasil. Universidade Federal do Rio de Janeiro; BrasilFil: Iribarrem, Alvaro. Pontifícia Universidade Católica do Rio de Janeiro; BrasilFil: Beyer, Hawthorne L.. The University of Queensland; Australia. University of Queensland; AustraliaFil: Cordeiro, Carlos Leandro. Pontifícia Universidade Católica do Rio de Janeiro; BrasilFil: Crouzeilles, Renato. Universidade Federal do Rio de Janeiro; Brasil. Pontifícia Universidade Católica do Rio de Janeiro; BrasilFil: Jakovac, Catarina C.. Pontifícia Universidade Católica do Rio de Janeiro; BrasilFil: Braga Junqueira, André. Pontifícia Universidade Católica do Rio de Janeiro; BrasilFil: Lacerda, Eduardo. Pontifícia Universidade Católica do Rio de Janeiro; Brasil. Universidade Federal Fluminense; BrasilFil: Latawiec, Agnieszka E.. University of East Anglia; Reino Unido. Pontifícia Universidade Católica do Rio de Janeiro; BrasilFil: Balmford, Andrew. University of Cambridge; Estados UnidosFil: Brooks, Thomas M.. University Of The Philippines Los Banos; Filipinas. Institute For Marine And Antarctic Studies; Australia. International Union For Conservation Of Nature And Natural Resources; SuizaFil: Butchart, Stuart H. M.. University of Cambridge; Estados UnidosFil: Chazdon, Robin L.. University Of The Sunshine Coast; Australia. University of Connecticut; Estados UnidosFil: Erb, Karl-Heinz. Universitat Fur Bodenkultur Wien; AustriaFil: Brancalion, Pedro. Universidade de Sao Paulo; BrasilFil: Buchanan, Graeme. Royal Society For The Protection Of Birds; Reino UnidoFil: Cooper, David. Secretariat Of The Convention On Biological Diversity; CanadáFil: Díaz, Sandra Myrna. Universidad Nacional de Córdoba; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Biología Vegetal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto Multidisciplinario de Biología Vegetal; ArgentinaFil: Donald, Paul F.. University of Cambridge; Estados UnidosFil: Kapos, Valerie. United Nations Environment Programme World Conservation Monitoring Centre; Reino UnidoFil: Leclère, David. International Institute For Applied Systems Analysis, Laxenburg; AustriaFil: Miles, Lera. United Nations Environment Programme World Conservation Monitoring Centre; Reino UnidoFil: Obersteiner, Michael. Oxford Social Sciences Division; Reino Unido. International Institute For Applied Systems Analysis, Laxenburg; AustriaFil: Plutzar, Christoph. Universitat Fur Bodenkultur Wien; Austria. Universidad de Viena; AustriaFil: de M. Scaramuzza, Carlos Alberto. International Institute For Sustainability; BrasilFil: Scarano, Fabio R.. Universidade Federal do Rio de Janeiro; BrasilFil: Visconti, Piero. International Institute For Applied Systems Analysis, Laxenburg; Austri

    The Portuguese Society of Rheumatology position paper on the use of biosimilars

    Get PDF
    Biotechnological drugs have become a fundamental resource for the treatment of rheumatic patients. Patent expiry of some of these drugs created the opportunity for biopharmaceutical manufacturers to develop biosimilar drugs intended to be as efficacious as the originator product but with a lower cost to healthcare systems. Due to the complex manufacturing process and highly intricate structure of biologicals, a biosimilar can never be an exact copy of its reference product. Consequently, regulatory authorities issued strict preclinical and clinical guidelines to ensure safety and efficacy equivalence and, in September 2013, the biosimilar of infliximab was the first biosimilar monoclonal antibody to be authorized for use in the European Union. The current document is a position statement of the "Sociedade Portuguesa de Reumatologia" (Portuguese Society of Rheumatology) on the use of biosimilar drugs in rheumatic diseases. Two systematic literature reviews were performed, one concerning clinical trials and the other one concerning international position papers on biosimilars. The results were presented and discussed in a national meeting and a final position document was discussed, written and approved by Portuguese rheumatologists. Briefly, this position statement is contrary to automatic substitution of the originator by the biosimilar, defends either a different INN or the prescription by brand name, supports that switching between biosimilars and the originator molecule should be done after at least 6 months of treatment and based on the attending physician decision and after adequate patient information, recommends the registration of all biosimilar treated patients in Reuma.pt for efficacy, safety and immunogenicity surveillance, following the strategy already ongoing for originators, and opposes to extrapolation of indications approved to the originator to completely different diseases and/or age groups without adequate pre-clinical, safety or efficacy data.info:eu-repo/semantics/publishedVersio

    Genomics and epidemiology for gastric adenocarcinomas (GE4GAC): a Brazilian initiative to study gastric cancer

    Get PDF
    Abstract Gastric cancer (GC) is the fifth most common type of cancer worldwide with high incidences in Asia, Central, and South American countries. This patchy distribution means that GC studies are neglected by large research centers from developed countries. The need for further understanding of this complex disease, including the local importance of epidemiological factors and the rich ancestral admixture found in Brazil, stimulated the implementation of the GE4GAC project. GE4GAC aims to embrace epidemiological, clinical, molecular and microbiological data from Brazilian controls and patients with malignant and pre-malignant gastric disease. In this letter, we summarize the main goals of the project, including subject and sample accrual and current findings

    Minimal information for studies of extracellular vesicles 2018 (MISEV2018):a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines

    Get PDF
    The last decade has seen a sharp increase in the number of scientific publications describing physiological and pathological functions of extracellular vesicles (EVs), a collective term covering various subtypes of cell-released, membranous structures, called exosomes, microvesicles, microparticles, ectosomes, oncosomes, apoptotic bodies, and many other names. However, specific issues arise when working with these entities, whose size and amount often make them difficult to obtain as relatively pure preparations, and to characterize properly. The International Society for Extracellular Vesicles (ISEV) proposed Minimal Information for Studies of Extracellular Vesicles (“MISEV”) guidelines for the field in 2014. We now update these “MISEV2014” guidelines based on evolution of the collective knowledge in the last four years. An important point to consider is that ascribing a specific function to EVs in general, or to subtypes of EVs, requires reporting of specific information beyond mere description of function in a crude, potentially contaminated, and heterogeneous preparation. For example, claims that exosomes are endowed with exquisite and specific activities remain difficult to support experimentally, given our still limited knowledge of their specific molecular machineries of biogenesis and release, as compared with other biophysically similar EVs. The MISEV2018 guidelines include tables and outlines of suggested protocols and steps to follow to document specific EV-associated functional activities. Finally, a checklist is provided with summaries of key points

    Photography-based taxonomy is inadequate, unnecessary, and potentially harmful for biological sciences

    Get PDF
    The question whether taxonomic descriptions naming new animal species without type specimen(s) deposited in collections should be accepted for publication by scientific journals and allowed by the Code has already been discussed in Zootaxa (Dubois & Nemésio 2007; Donegan 2008, 2009; Nemésio 2009a–b; Dubois 2009; Gentile & Snell 2009; Minelli 2009; Cianferoni & Bartolozzi 2016; Amorim et al. 2016). This question was again raised in a letter supported by 35 signatories published in the journal Nature (Pape et al. 2016) on 15 September 2016. On 25 September 2016, the following rebuttal (strictly limited to 300 words as per the editorial rules of Nature) was submitted to Nature, which on 18 October 2016 refused to publish it. As we think this problem is a very important one for zoological taxonomy, this text is published here exactly as submitted to Nature, followed by the list of the 493 taxonomists and collection-based researchers who signed it in the short time span from 20 September to 6 October 2016

    Pervasive gaps in Amazonian ecological research

    Get PDF

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear un derstanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5–7 vast areas of the tropics remain understudied.8–11 In the American tropics, Amazonia stands out as the world’s most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepre sented in biodiversity databases.13–15 To worsen this situation, human-induced modifications16,17 may elim inate pieces of the Amazon’s biodiversity puzzle before we can use them to understand how ecological com munities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple or ganism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region’s vulnerability to environmental change. 15%–18% of the most ne glected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lostinfo:eu-repo/semantics/publishedVersio
    corecore