34 research outputs found

    Integrated web visualizations for protein-protein interaction databases

    Get PDF
    BACKGROUND: Understanding living systems is crucial for curing diseases. To achieve this task we have to understand biological networks based on protein-protein interactions. Bioinformatics has come up with a great amount of databases and tools that support analysts in exploring protein-protein interactions on an integrated level for knowledge discovery. They provide predictions and correlations, indicate possibilities for future experimental research and fill the gaps to complete the picture of biochemical processes. There are numerous and huge databases of protein-protein interactions used to gain insights into answering some of the many questions of systems biology. Many computational resources integrate interaction data with additional information on molecular background. However, the vast number of diverse Bioinformatics resources poses an obstacle to the goal of understanding. We present a survey of databases that enable the visual analysis of protein networks. RESULTS: We selected M =10 out of N =53 resources supporting visualization, and we tested against the following set of criteria: interoperability, data integration, quantity of possible interactions, data visualization quality and data coverage. The study reveals differences in usability, visualization features and quality as well as the quantity of interactions. StringDB is the recommended first choice. CPDB presents a comprehensive dataset and IntAct lets the user change the network layout. A comprehensive comparison table is available via web. The supplementary table can be accessed on http://tinyurl.com/PPI-DB-Comparison-2015. CONCLUSIONS: Only some web resources featuring graph visualization can be successfully applied to interactive visual analysis of protein-protein interaction. Study results underline the necessity for further enhancements of visualization integration in biochemical analysis tools. Identified challenges are data comprehensiveness, confidence, interactive feature and visualization maturing

    State-of-the-Art Explainability Methods with Focus on Visual Analytics Showcased by Glioma Classification

    Get PDF
    This study aims to reflect on a list of libraries providing decision support to AI models. The goal is to assist in finding suitable libraries that support visual explainability and interpretability of the output of their AI model. Especially in sensitive application areas, such as medicine, this is crucial for understanding the decision-making process and for a safe application. Therefore, we use a glioma classification model’s reasoning as an underlying case. We present a comparison of 11 identified Python libraries that provide an addition to the better known SHAP and LIME libraries for visualizing explainability. The libraries are selected based on certain attributes, such as being implemented in Python, supporting visual analysis, thorough documentation, and active maintenance. We showcase and compare four libraries for global interpretations (ELI5, Dalex, InterpretML, and SHAP) and three libraries for local interpretations (Lime, Dalex, and InterpretML). As use case, we process a combination of openly available data sets on glioma for the task of studying feature importance when classifying the grade II, III, and IV brain tumor subtypes glioblastoma multiforme (GBM), anaplastic astrocytoma (AASTR), and oligodendroglioma (ODG), out of 1276 samples and 252 attributes. The exemplified model confirms known variations and studying local explainability contributes to revealing less known variations as putative biomarkers. The full comparison spreadsheet and implementation examples can be found in the appendix

    A historical perspective of biomedical explainable AI research

    Get PDF
    The black-box nature of most artificial intelligence (AI) models encourages the development of explainability methods to engender trust into the AI decision-making process. Such methods can be broadly categorized into two main types: post hoc explanations and inherently interpretable algorithms. We aimed at analyzing the possible associations between COVID-19 and the push of explainable AI (XAI) to the forefront of biomedical research. We automatically extracted from the PubMed database biomedical XAI studies related to concepts of causality or explainability and manually labeled 1,603 papers with respect to XAI categories. To compare the trends pre- and post-COVID-19, we fit a change point detection model and evaluated significant changes in publication rates. We show that the advent of COVID-19 in the beginning of 2020 could be the driving factor behind an increased focus concerning XAI, playing a crucial role in accelerating an already evolving trend. Finally, we present a discussion with future societal use and impact of XAI technologies and potential future directions for those who pursue fostering clinical trust with interpretable machine learning models.</p

    Data Stewardship – Austrian National Strategy and Alignment

    Get PDF
    Within the FAIR Data Austria project, supported by the Federal Ministry for Education, Science, and Research (BMBWF), a national strategy has been established to advance the creation of tailored Data Stewardship solutions for the Austrian context. The strategy, formalized as a toolbox, delineates various Data Steward models, corresponding competencies, and accessible training resources. Despite the crucial role of Data Stewardship in supporting data-driven scientific research, Austrian universities encounter challenges in its implementation. Issues include lack of consensus on the skills, roles, and responsibilities of Data Stewards, coupled with insufficient funding for these positions. This article explores these challenges and emphasizes the importance of addressing them to promote effective Data Stewardship within the Austrian academic landscape

    Being Moved: Louis XIV’s Triumphant Tenderness and the Protestant Object

    Get PDF
    This essay examines the place of affect in Le Triomphe de la Religion, a text from 1687 that praises Louis XIV for the Revocation of the Edict of Nantes and the forced conversion of French Protestants. It explores the role of the material object in this text and contrasts it with seventeenth-century Protestant fears about the seductive power of Catholic objects. Drawing on the work of affect theory, it suggest how attention to the strange relation between emotion and the material object might better illuminate our sense of what it meant to be religiously different in absolutist France

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    Get PDF
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research.Peer reviewe
    corecore