6 research outputs found

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    Get PDF
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research.Peer reviewe

    Bubble-particle collisions in turbulence: Insights from point-particle simulations

    No full text
    Bubble-particle collisions in turbulence are central to a variety of processes such as froth flotation. Despite their importance, details of the collision process have not received much attention yet. This is compounded by the sometimes counter-intuitive behaviour of bubbles and particles in turbulence, as exemplified by the fact that they segregate in space. Although bubble-particle relative behaviour is fundamentally different from that of identical particles, the existing theoretical models are nearly all extensions of theories for particle-particle collisions in turbulence. The adequacy of these theories has yet to be assessed as appropriate data remain scarce to date. In this investigation, we study the geometric collision rate by means of direct numerical simulations of bubble-particle collisions in homogeneous isotropic turbulence using the point-particle approach over a range of the relevant parameters, including the Stokes and Reynolds numbers. We analyse the spatial distribution of bubble and particles, and quantify to what extent their segregation reduces the collision rate. This effect is countered by increased approach velocities for bubble-particle compared to monodisperse pairs, which we relate to the difference in how bubbles and particles respond to fluid accelerations. We found that in the investigated parameter range, these collision statistics are not altered significantly by the inclusion of a lift force or different drag parametrisations, or when assuming infinite particle density. Furthermore, we critically examine existing models and discuss inconsistencies therein that contribute to the discrepancy

    Settling behaviour of thin curved particles in quiescent fluid and turbulence

    No full text
    The motion of thin curved falling particles is ubiquitous in both nature and industry but is not yet widely examined. Here, we describe an experimental study on the dynamics of thin cylindrical shells resembling broken bottle fragments settling through quiescent fluid and homogeneous anisotropic turbulence. The particles have Archimedes numbers based on the mean descent velocity 0.75×104≲Ar≲2.75×104. Turbulence reaching a Reynolds number of Reλ≈100 is generated in a water tank using random jet arrays mounted in a coplanar configuration. After the flow becomes statistically stationary, a particle is released and its three-dimensional motion is recorded using two orthogonally positioned high-speed cameras. We propose a simple pendulum model that accurately captures the velocity fluctuations of the particles in still fluid and find that differences in the falling style might be explained by a closer alignment between the particle's pitch angle and its velocity vector. By comparing the trajectories under background turbulence with the quiescent fluid cases, we measure a decrease in the mean descent velocity in turbulence for the conditions tested. We also study the secondary motion of the particles and identify descent events that are unique to turbulence such as ‘long gliding’ and ‘rapid rotation’ events. Lastly, we show an increase in the radial dispersion of the particles under background turbulence and correlate the time scale of descent events with the local settling velocity

    Data for figures in the publication "Bubble-particle collisions in turbulence: insights from point-particle simulations"

    No full text
    Eularian and Lagrangian statistics from point-particle simulations of bubble and particles in homogeneous isotropic turbulence at Taylor Reynolds number of 72,175 and Stokes number between 0.1 and 3.</p

    Data for figures in the publication "Bubble-particle collisions in turbulence: insights from point-particle simulations"

    No full text
    Eularian and Lagrangian statistics from point-particle simulations of bubble and particles in homogeneous isotropic turbulence at Taylor Reynolds number of 72,175 and Stokes number between 0.1 and 3.</p

    First Sagittarius A* Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole in the Center of the Milky Way

    Get PDF
    Abstract We present the first Event Horizon Telescope (EHT) observations of Sagittarius A* (Sgr A*), the Galactic center source associated with a supermassive black hole. These observations were conducted in 2017 using a global interferometric array of eight telescopes operating at a wavelength of λ = 1.3 mm. The EHT data resolve a compact emission region with intrahour variability. A variety of imaging and modeling analyses all support an image that is dominated by a bright, thick ring with a diameter of 51.8 ± 2.3 μas (68% credible interval). The ring has modest azimuthal brightness asymmetry and a comparatively dim interior. Using a large suite of numerical simulations, we demonstrate that the EHT images of Sgr A* are consistent with the expected appearance of a Kerr black hole with mass ∼4 × 106 M ⊙, which is inferred to exist at this location based on previous infrared observations of individual stellar orbits, as well as maser proper-motion studies. Our model comparisons disfavor scenarios where the black hole is viewed at high inclination (i &gt; 50°), as well as nonspinning black holes and those with retrograde accretion disks. Our results provide direct evidence for the presence of a supermassive black hole at the center of the Milky Way, and for the first time we connect the predictions from dynamical measurements of stellar orbits on scales of 103–105 gravitational radii to event-horizon-scale images and variability. Furthermore, a comparison with the EHT results for the supermassive black hole M87* shows consistency with the predictions of general relativity spanning over three orders of magnitude in central mass.</jats:p
    corecore