4,460 research outputs found

    T- Force o Test de Squat Jump. ¿Cuál es la mejor forma de evaluar la potencia máxima en futbolistas profesionales?

    Get PDF
    In high-performance sport it is important to carry out a control to athletes, which must start from the evaluation of physical abilities every certain period of time; for this you should choose  the appropriate tests and instruments  considering the gesture and driving pattern of each discipline, as well as the characteristics of each subject. The  objective of this research was based on the comparison of two measuring instruments  validated in the strength analysis:  T-Force® in which the squat and Optogait® test was carried out with the Squat Jump Protocol (SJ) to evaluate maximum power in professional footballers of two football teams in the city of  Bogotá. Descriptive study, correlated scope of cross-sectional type. It was attended by 38 male athletes, who performed the SJ tests on Optogait and squat test in T-Force; for the processing and analysis of the data a T test was performed for related samples. Significant differences were found between the results of both tests, where the maximum power obtained was higher with T-Force test, but the deviation of the data was lower in the case of the Optogait. According to the results, sand determined that the best method for measuring maximum power in footballers is the T-Force.En el deporte de alto rendimiento es importante llevar a cabo un control a los deportistas, el cual debe partir de la evaluación de las capacidades físicas cada cierto periodo de tiempo; para esto se deben escoger las pruebas e instrumentos adecuados considerando el gesto y patrón motriz de cada disciplina, así como las características propias de cada sujeto. El objetivo de la presente investigación se basó en la comparación de dos instrumentos de medición validados en el análisis de la fuerza: T-Force® en el cual se realizó el test de sentadilla y Optogait® con el protocolo de Squat Jump (SJ), para evaluar potencia máxima en futbolistas profesionales de dos equipos de futbol de la ciudad de Bogotá. Estudio descriptivo, de alcance correlacional de tipo transversal. Se contó con la participación de 38 deportistas de género masculino, quienes realizaron las pruebas de SJ en Optogait y test de sentadilla en T-Force; para el procesamiento y análisis de los datos se realizó una prueba T para muestras relacionadas. Se encontraron diferencias significativas entre los resultados de ambas pruebas, donde la potencia máxima obtenida fue más alta con el test de T-Force, pero la desviación de los datos fue menor en el caso del Optogait. De acuerdo con los resultados, se determinó que el mejor método para la medición de la potencia máxima en futbolistas es el T-Force

    Extragalactic Magnetism with SOFIA (SALSA Legacy Program). VII. A tomographic view of far infrared and radio polarimetric observations through MHD simulations of galaxies

    Full text link
    The structure of magnetic fields in galaxies remains poorly constrained, despite the importance of magnetism in the evolution of galaxies. Radio synchrotron and far-infrared dust polarization (FIR) polarimetric observations are the best methods to measure galactic scale properties of magnetic fields in galaxies beyond the Milky Way. We use synthetic polarimetric observations of a simulated galaxy to identify and quantify the regions, scales, and interstellar medium (ISM) phases probed at FIR and radio wavelengths. Our studied suite of magnetohydrodynamical cosmological zoom-in simulations features high-resolutions (10 pc full-cell size) and multiple magnetization models. Our synthetic observations have a striking resemblance to those of observed galaxies. We find that the total and polarized radio emission extends to approximately double the altitude above the galactic disk (half-intensity disk thickness of hI radiohPI radio=0.23±0.03h_\text{I radio} \sim h_\text{PI radio} = 0.23 \pm 0.03 kpc) relative to the FIR total and polarized emission that are concentrated in the disk midplane (hI FIRhPI FIR=0.11±0.01h_\text{I FIR} \sim h_\text{PI FIR} = 0.11 \pm 0.01 kpc). Radio emission traces magnetic fields at scales of 300\gtrsim 300 pc, whereas FIR emission probes magnetic fields at the smallest scales of our simulations. These scales are comparable to our spatial resolution and well below the spatial resolution (<300<300 pc) of existing FIR polarimetric measurements. Finally, we confirm that synchrotron emission traces a combination of the warm neutral and cold neutral gas phases, whereas FIR emission follows the densest gas in the cold neutral phase in the simulation. These results are independent of the ISM magnetic field strength. The complementarity we measure between radio and FIR wavelengths motivates future multiwavelength polarimetric observations to advance our knowledge of extragalactic magnetism.Comment: Submitted to ApJ. 32 pages, 15 figure

    Extragalactic Magnetism with SOFIA (SALSA Legacy Program). VII. A Tomographic View of Far-infrared and Radio Polarimetric Observations through MHD Simulations of Galaxies

    Get PDF
    The structure of magnetic fields in galaxies remains poorly constrained, despite the importance of magnetism in the evolution of galaxies. Radio synchrotron and far-infrared (FIR) polarization and polarimetric observations are the best methods to measure galactic scale properties of magnetic fields in galaxies beyond the Milky Way. We use synthetic polarimetric observations of a simulated galaxy to identify and quantify the regions, scales, and interstellar medium (ISM) phases probed at FIR and radio wavelengths. Our studied suite of magnetohydrodynamical cosmological zoom-in simulations features high-resolutions (10 pc full-cell size) and multiple magnetization models. Our synthetic observations have a striking resemblance to those of observed galaxies. We find that the total and polarized radio emission extends to approximately double the altitude above the galactic disk (half-intensity disk thickness of h I radio ∼ h PI radio = 0.23 ± 0.03 kpc) relative to the total FIR and polarized emission that are concentrated in the disk midplane (h I FIR ∼ h PI FIR = 0.11 ± 0.01 kpc). Radio emission traces magnetic fields at scales of ≳300 pc, whereas FIR emission probes magnetic fields at the smallest scales of our simulations. These scales are comparable to our spatial resolution and well below the spatial resolution (<300 pc) of existing FIR polarimetric measurements. Finally, we confirm that synchrotron emission traces a combination of the warm neutral and cold neutral gas phases, whereas FIR emission follows the densest gas in the cold neutral phase in the simulation. These results are independent of the ISM magnetic field strength. The complementarity we measure between radio and FIR wavelengths motivates future multiwavelength polarimetric observations to advance our knowledge of extragalactic magnetism

    Risk assessment, eradication, and biological control: global efforts to limit Australian acacia invasions

    Get PDF
    Aim? Many Australian Acacia species have been planted around the world, some are highly valued, some are invasive, and some are both highly valued and invasive. We review global efforts to minimize the risk and limit the impact of invasions in this widely used plant group. Location? Global. Methods? Using information from literature sources, knowledge and experience of the authors, and the responses from a questionnaire sent to experts around the world, we reviewed: (1) a generalized life cycle of Australian acacias and how to control each life stage, (2) different management approaches and (3) what is required to help limit or prevent invasions. Results? Relatively few Australian acacias have been introduced in large numbers, but all species with a long and extensive history of planting have become invasive somewhere. Australian acacias, as a group, have a high risk of becoming invasive and causing significant impacts as determined by existing assessment schemes. Moreover, in most situations, long-lived seed banks mean it is very difficult to control established infestations. Control has focused almost exclusively on widespread invaders, and eradication has rarely been attempted. Classical biological control is being used in South Africa with increasing success. Main conclusions? A greater emphasis on pro-active rather than reactive management is required given the difficulties managing established invasions of Australian acacias. Adverse effects of proposed new introductions can be minimized by conducting detailed risk assessments in advance, planning for on-going monitoring and management, and ensuring resources are in place for long-term mitigation. Benign alternatives (e.g. sterile hybrids) could be developed to replace existing utilized taxa. Eradication should be set as a management goal more often to reduce the invasion debt. Introducing classical biological control agents that have a successful track-record in South Africa to other regions and identifying new agents (notably vegetative feeders) can help mitigate existing widespread invasions. Trans-boundary sharing of information will assist efforts to limit future invasions, in particular, management strategies need to be better evaluated, monitored, published and publicised so that global best-practice procedures can be developed. (Résumé d'auteur

    The Herschel Multi-tiered Extragalactic Survey: HerMES

    Get PDF
    The Herschel Multi-tiered Extragalactic Survey, HerMES, is a legacy program designed to map a set of nested fields totalling ~380 deg^2. Fields range in size from 0.01 to ~20 deg^2, using Herschel-SPIRE (at 250, 350 and 500 \mu m), and Herschel-PACS (at 100 and 160 \mu m), with an additional wider component of 270 deg^2 with SPIRE alone. These bands cover the peak of the redshifted thermal spectral energy distribution from interstellar dust and thus capture the re-processed optical and ultra-violet radiation from star formation that has been absorbed by dust, and are critical for forming a complete multi-wavelength understanding of galaxy formation and evolution. The survey will detect of order 100,000 galaxies at 5\sigma in some of the best studied fields in the sky. Additionally, HerMES is closely coordinated with the PACS Evolutionary Probe survey. Making maximum use of the full spectrum of ancillary data, from radio to X-ray wavelengths, it is designed to: facilitate redshift determination; rapidly identify unusual objects; and understand the relationships between thermal emission from dust and other processes. Scientific questions HerMES will be used to answer include: the total infrared emission of galaxies; the evolution of the luminosity function; the clustering properties of dusty galaxies; and the properties of populations of galaxies which lie below the confusion limit through lensing and statistical techniques. This paper defines the survey observations and data products, outlines the primary scientific goals of the HerMES team, and reviews some of the early results.Comment: 23 pages, 17 figures, 9 Tables, MNRAS accepte

    The structure of mercantile communities in the Roman world : how open were Roman trade networks?

    Get PDF

    Measurement of the cosmic ray spectrum above 4×10184{\times}10^{18} eV using inclined events detected with the Pierre Auger Observatory

    Full text link
    A measurement of the cosmic-ray spectrum for energies exceeding 4×10184{\times}10^{18} eV is presented, which is based on the analysis of showers with zenith angles greater than 6060^{\circ} detected with the Pierre Auger Observatory between 1 January 2004 and 31 December 2013. The measured spectrum confirms a flux suppression at the highest energies. Above 5.3×10185.3{\times}10^{18} eV, the "ankle", the flux can be described by a power law EγE^{-\gamma} with index γ=2.70±0.02(stat)±0.1(sys)\gamma=2.70 \pm 0.02 \,\text{(stat)} \pm 0.1\,\text{(sys)} followed by a smooth suppression region. For the energy (EsE_\text{s}) at which the spectral flux has fallen to one-half of its extrapolated value in the absence of suppression, we find Es=(5.12±0.25(stat)1.2+1.0(sys))×1019E_\text{s}=(5.12\pm0.25\,\text{(stat)}^{+1.0}_{-1.2}\,\text{(sys)}){\times}10^{19} eV.Comment: Replaced with published version. Added journal reference and DO

    A search for point sources of EeV photons

    Full text link
    Measurements of air showers made using the hybrid technique developed with the fluorescence and surface detectors of the Pierre Auger Observatory allow a sensitive search for point sources of EeV photons anywhere in the exposed sky. A multivariate analysis reduces the background of hadronic cosmic rays. The search is sensitive to a declination band from -85{\deg} to +20{\deg}, in an energy range from 10^17.3 eV to 10^18.5 eV. No photon point source has been detected. An upper limit on the photon flux has been derived for every direction. The mean value of the energy flux limit that results from this, assuming a photon spectral index of -2, is 0.06 eV cm^-2 s^-1, and no celestial direction exceeds 0.25 eV cm^-2 s^-1. These upper limits constrain scenarios in which EeV cosmic ray protons are emitted by non-transient sources in the Galaxy.Comment: 28 pages, 10 figures, accepted for publication in The Astrophysical Journa

    Energy Estimation of Cosmic Rays with the Engineering Radio Array of the Pierre Auger Observatory

    Full text link
    The Auger Engineering Radio Array (AERA) is part of the Pierre Auger Observatory and is used to detect the radio emission of cosmic-ray air showers. These observations are compared to the data of the surface detector stations of the Observatory, which provide well-calibrated information on the cosmic-ray energies and arrival directions. The response of the radio stations in the 30 to 80 MHz regime has been thoroughly calibrated to enable the reconstruction of the incoming electric field. For the latter, the energy deposit per area is determined from the radio pulses at each observer position and is interpolated using a two-dimensional function that takes into account signal asymmetries due to interference between the geomagnetic and charge-excess emission components. The spatial integral over the signal distribution gives a direct measurement of the energy transferred from the primary cosmic ray into radio emission in the AERA frequency range. We measure 15.8 MeV of radiation energy for a 1 EeV air shower arriving perpendicularly to the geomagnetic field. This radiation energy -- corrected for geometrical effects -- is used as a cosmic-ray energy estimator. Performing an absolute energy calibration against the surface-detector information, we observe that this radio-energy estimator scales quadratically with the cosmic-ray energy as expected for coherent emission. We find an energy resolution of the radio reconstruction of 22% for the data set and 17% for a high-quality subset containing only events with at least five radio stations with signal.Comment: Replaced with published version. Added journal reference and DO
    corecore