250 research outputs found

    Confidence from uncertainty - A multi-target drug screening method from robust control theory

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Robustness is a recognized feature of biological systems that evolved as a defence to environmental variability. Complex diseases such as diabetes, cancer, bacterial and viral infections, exploit the same mechanisms that allow for robust behaviour in healthy conditions to ensure their own continuance. Single drug therapies, while generally potent regulators of their specific protein/gene targets, often fail to counter the robustness of the disease in question. Multi-drug therapies offer a powerful means to restore disrupted biological networks, by targeting the subsystem of interest while preventing the diseased network from reconciling through available, redundant mechanisms. Modelling techniques are needed to manage the high number of combinatorial possibilities arising in multi-drug therapeutic design, and identify synergistic targets that are robust to system uncertainty.</p> <p>Results</p> <p>We present the application of a method from robust control theory, Structured Singular Value or μ- analysis, to identify highly effective multi-drug therapies by using robustness in the face of uncertainty as a new means of target discrimination. We illustrate the method by means of a case study of a negative feedback network motif subject to parametric uncertainty.</p> <p>Conclusions</p> <p>The paper contributes to the development of effective methods for drug screening in the context of network modelling affected by parametric uncertainty. The results have wide applicability for the analysis of different sources of uncertainty like noise experienced in the data, neglected dynamics, or intrinsic biological variability.</p

    Age-related difference in susceptibility of ApcMin/+ mice towards the chemopreventive efficacy of dietary aspirin and curcumin

    Get PDF
    The nonsteroidal anti-inflammatory drug aspirin and the spice curcumin retard adenoma formation when administered long-term to ApcMin/+ mice, a model of human familial adenomatous polyposis coli. Both agents interfere with cyclooxygenase activity. When aspirin is administered to ApcMin/+ mice only postweaning, but not before, it is inefficacious, while curcumin given postweaning is active. Here the hypothesis was tested that dietary aspirin (0.05%) or curcumin (0.2%) prevent or delay adenoma formation in offsprings when administered to ApcMin/+ mothers and up to the end of weaning, but not afterwards. Whereas curcumin was without effect when administered in this way, aspirin reduced numbers of intestinal adenomas by 21%. When aspirin given up to the end of weaning was combined with curcumin administered from the end of weaning for the rest of the animals' lifetime, intestinal adenoma numbers were reduced by 38%. The combination was not superior to intervention postweaning with curcumin alone. These results show that aspirin exerts chemopreventive activity in the ApcMin/+ mouse during tumour initiation/early promotion, while curcumin is efficacious when given at a later stage of carcinogenic progression. Thus, the results suggest that in this mouse model aspirin and curcumin act during different ‘windows’ of neoplastic development

    The Aspartate-Semialdehyde Dehydrogenase of Edwardsiella ictaluri and Its Use as Balanced-Lethal System in Fish Vaccinology

    Get PDF
    asdA mutants of Gram-negative bacteria have an obligate requirement for diaminopimelic acid (DAP), which is an essential constituent of the peptidoglycan layer of the cell wall of these organisms. In environments deprived of DAP, i.e., animal tissues, they will undergo lysis. Deletion of the asdA gene has previously been exploited to develop antibiotic-sensitive strains of live attenuated recombinant bacterial vaccines. Introduction of an Asd+ plasmid into a ΔasdA mutant makes the bacterial strain plasmid-dependent. This dependence on the Asd+ plasmid vector creates a balanced-lethal complementation between the bacterial strain and the recombinant plasmid. E. ictaluri is an enteric Gram-negative fish pathogen that causes enteric septicemia in catfish. Because E. ictaluri is a nasal/oral invasive intracellular pathogen, this bacterium is a candidate to develop a bath/oral live recombinant attenuated Edwardsiella vaccine (RAEV) for the catfish aquaculture industry. As a first step to develop an antibiotic-sensitive RAEV strain, we characterized and deleted the E. ictaluri asdA gene. E. ictaluri ΔasdA01 mutants exhibit an absolute requirement for DAP to grow. The asdA gene of E. ictaluri was complemented by the asdA gene from Salmonella. Several Asd+ expression vectors with different origins of replication were transformed into E. ictaluri ΔasdA01. Asd+ vectors were compatible with the pEI1 and pEI2 E. ictaluri native plasmids. The balanced-lethal system was satisfactorily evaluated in vivo. Recombinant GFP, PspA, and LcrV proteins were synthesized by E. ictaluri ΔasdA01 harboring Asd+ plasmids. Here we constructed a balanced-lethal system, which is the first step to develop an antibiotic-sensitive RAEV for the aquaculture industry

    Pyrokinin β-Neuropeptide Affects Necrophoretic Behavior in Fire Ants (S. invicta), and Expression of β-NP in a Mycoinsecticide Increases Its Virulence

    Get PDF
    Fire ants are one of the world's most damaging invasive pests, with few means for their effective control. Although ecologically friendly alternatives to chemical pesticides such as the insecticidal fungus Beauveria bassiana have been suggested for the control of fire ant populations, their use has been limited due to the low virulence of the fungus and the length of time it takes to kill its target. We present a means of increasing the virulence of the fungal agent by expressing a fire ant neuropeptide. Expression of the fire ant (Solenopsis invicta) pyrokinin β -neuropeptide (β-NP) by B. bassiana increased fungal virulence six-fold towards fire ants, decreased the LT50, but did not affect virulence towards the lepidopteran, Galleria mellonella. Intriguingly, ants killed by the β-NP expressing fungus were disrupted in the removal of dead colony members, i.e. necrophoretic behavior. Furthermore, synthetic C-terminal amidated β-NP but not the non-amidated peptide had a dramatic effect on necrophoretic behavior. These data link chemical sensing of a specific peptide to a complex social behavior. Our results also confirm a new approach to insect control in which expression of host molecules in an insect pathogen can by exploited for target specific augmentation of virulence. The minimization of the development of potential insect resistance by our approach is discussed

    Regulation of Classical Cadherin Membrane Expression and F-Actin Assembly by Alpha-Catenins, during Xenopus Embryogenesis

    Get PDF
    Alpha (α)-E-catenin is a component of the cadherin complex, and has long been thought to provide a link between cell surface cadherins and the actin skeleton. More recently, it has also been implicated in mechano-sensing, and in the control of tissue size. Here we use the early Xenopus embryos to explore functional differences between two α-catenin family members, α-E- and α-N-catenin, and their interactions with the different classical cadherins that appear as tissues of the embryo become segregated from each other. We show that they play both cadherin-specific and context-specific roles in the emerging tissues of the embryo. α-E-catenin interacts with both C- and E-cadherin. It is specifically required for junctional localization of C-cadherin, but not of E-cadherin or N-cadherin at the neurula stage. α-N-cadherin interacts only with, and is specifically required for junctional localization of, N-cadherin. In addition, α -E-catenin is essential for normal tissue size control in the non-neural ectoderm, but not in the neural ectoderm or the blastula. We also show context specificity in cadherin/ α-catenin interactions. E-cadherin requires α-E-catenin for junctional localization in some tissues, but not in others, during early development. These specific functional cadherin/alpha-catenin interactions may explain the basis of cadherin specificity of actin assembly and morphogenetic movements seen previously in the neural and non-neural ectoderm

    Estimation of Ligament Loading and Anterior Tibial Translation in Healthy and ACL-Deficient Knees During Gait and the Influence of Increasing Tibial Slope Using EMG-Driven Approach

    Get PDF
    The purpose of this study was to develop a biomechanical model to estimate anterior tibial translation (ATT), anterior shear forces, and ligament loading in the healthy and anterior cruciate ligament (ACL)-deficient knee joint during gait. This model used electromyography (EMG), joint position, and force plate data as inputs to calculate ligament loading during stance phase. First, an EMG-driven model was used to calculate forces for the major muscles crossing the knee joint. The calculated muscle forces were used as inputs to a knee model that incorporated a knee–ligament model in order to solve for ATT and ligament forces. The model took advantage of using EMGs as inputs, and could account for the abnormal muscle activation patterns of ACL-deficient gait. We validated our model by comparing the calculated results with previous in vitro, in vivo, and numerical studies of healthy and ACL-deficient knees, and this gave us confidence on the accuracy of our model calculations. Our model predicted that ATT increased throughout stance phase for the ACL-deficient knee compared with the healthy knee. The medial collateral ligament functioned as the main passive restraint to anterior shear force in the ACL-deficient knee. Although strong co-contraction of knee flexors was found to help restrain ATT in the ACL-deficient knee, it did not counteract the effect of ACL rupture. Posterior inclination angle of the tibial plateau was found to be a crucial parameter in determining knee mechanics, and increasing the tibial slope inclination in our model would increase the resulting ATT and ligament forces in both healthy and ACL-deficient knees

    Avian Pathogenic Escherichia coli (APEC) Infection Alters Bone Marrow Transcriptome in Chickens

    Get PDF
    Avian pathogenic Escherichia coli (APEC) is a major cause of disease impacting animal health. The bone marrow is the reservoir of immature immune cells; however, it has not been examined to date for gene expression related to developmental changes (cell differentiation, maturation, programming) after APEC infection. Here, we study gene expression in the bone marrow between infected and non-infected animals, and between infected animals with mild (resistant) versus severe (susceptible) pathology, at two times post-infection. We sequenced 24 bone marrow RNA libraries generated from the six different treatment groups with four replicates each, and obtained an average of 22 million single-end, 100-bp reads per library. Genes were detected as differentially expressed (DE) between APEC treatments (mild pathology, severe pathology, and mock-challenged) at a given time point, or DE between 1 and 5 days post-infection (dpi) within the same treatment group. Results demonstrate that many immune cells, genes and related pathways are key contributors to the different responses to APEC infection between susceptible and resistant birds and between susceptible and non-challenged birds, at both times post-infection. In susceptible birds, lymphocyte differentiation, proliferation, and maturation were greatly impaired, while the innate and adaptive immune responses, including dendritic cells, monocytes and killer cell activity, TLR- and NOD-like receptor signaling, as well as T helper cells and many cytokine activities, were markedly enhanced. The resistant birds’ immune system, however, was similar to that of non-challenged birds. The DE genes in the immune cells and identified signaling models are representative of activation and resolution of infection in susceptible birds at both post-infection days. These novel results characterizing transcriptomic response to APEC infection reveal that there is combinatorial activity of multiple genes controlling myeloid cells, and B and T cell lymphopoiesis, as well as immune responses occurring in the bone marrow in these early stages of response to infection
    corecore