67 research outputs found

    A double-blind placebo-controlled, randomised study comparing gemcitabine and marimastat with gemcitabine and placebo as first line therapy in patients with advanced pancreatic cancer

    Get PDF
    Pancreatic cancer is the fifth most common cause of cancer death in the western world and the prognosis for unresectable disease remains poor. Recent advances in conventional chemotherapy and the development of novel ‘molecular’ treatment strategies with different toxicity profiles warrant investigation as combination treatment strategies. This randomised study in pancreatic cancer compares marimastat (orally administered matrix metalloproteinase inhibitor) in combination with gemcitabine to gemcitabine alone. Two hundred and thirty-nine patients with unresectable pancreatic cancer were randomised to receive gemcitabine (1000 mg m−2) in combination with either marimastat or placebo. The primary end-point was survival. Objective tumour response and duration of response, time to treatment failure and disease progression, quality of life and safety were also assessed. There was no significant difference in survival between gemcitabine and marimastat and gemcitabine and placebo (P=0.95 log-rank test). Median survival times were 165.5 and 164 days and 1-year survival was 18% and 17% respectively. There were no significant differences in overall response rates (11 and 16% respectively), progression-free survival (P=0.68 log-rank test) or time to treatment failure (P=0.70 log-rank test) between the treatment arms. The gemcitabine and marimastat combination was well tolerated with only 2.5% of patients withdrawn due to presumed marimastat toxicity. Grade 3 or 4 musculoskeletal toxicities were reported in only 4% of the marimastat treated patients, although 59% of marimastat treated patients reported some musculoskeletal events. The results of this study provide no evidence to support a combination of marimastat with gemcitabine in patients with advanced pancreatic cancer. The combination of marimastat with gemcitabine was well tolerated. Further studies of marimastat as a maintenance treatment following a response or stable disease on gemcitabine may be justified

    Individuals with chronic low back pain have greater difficulty in engaging in positive lifestyle behaviours than those without back pain: An assessment of health literacy

    Get PDF
    Background: Despite the large volume of research dedicated to understanding chronic low back pain (CLBP), patient outcomes remain modest while healthcare costs continue to rise, creating a major public health burden. Health literacy - the ability to seek, understand and utilise health information - has been identified as an important factor in the course of other chronic conditions and may be important in the aetiology of CLBP. Many of the currently available health literacy measurement tools are limited since they measure narrow aspects of health literacy. The Health Literacy Measurement Scale (HeLMS) was developed recently to measure broader elements of health literacy. The aim of this study was to measure broad elements of health literacy among individuals with CLBP and without LBP using the HeLMS.Methods: Thirty-six community-dwelling adults with CLBP and 44 with no history of LBP responded to the HeLMS. Individuals were recruited as part of a larger community-based spinal health study in Western Australia. Scores for the eight domains of the HeLMS as well as individual item responses were compared between the groups.Results: HeLMS scores were similar between individuals with and without CLBP for seven of the eight health literacy domains (p &gt; 0.05). However, compared to individuals with no history of LBP, those with CLBP had a significantly lower score in the domain &lsquo;Patient attitudes towards their health&rsquo; (mean difference [95% CI]: 0.46 [0.11- 0.82]) and significantly lower scores for each of the individual items within this domain (p &lt; 0.05). Moderate effect sizes ranged from d = 0.47-0.65.Conclusions: Although no differences were identified in HeLMS scores between the groups for seven of the health literacy domains, adults with CLBP reported greater difficulty in engaging in general positive health behaviours. This aspect of health literacy suggests that self-management support initiatives may benefit individuals with CLBP.<br /

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    Localization and broadband follow-up of the gravitational-wave transient GW150914

    Get PDF
    A gravitational-wave (GW) transient was identified in data recorded by the Advanced Laser Interferometer Gravitational-wave Observatory (LIGO) detectors on 2015 September 14. The event, initially designated G184098 and later given the name GW150914, is described in detail elsewhere. By prior arrangement, preliminary estimates of the time, significance, and sky location of the event were shared with 63 teams of observers covering radio, optical, near-infrared, X-ray, and gamma-ray wavelengths with ground- and space-based facilities. In this Letter we describe the low-latency analysis of the GW data and present the sky localization of the first observed compact binary merger. We summarize the follow-up observations reported by 25 teams via private Gamma-ray Coordinates Network circulars, giving an overview of the participating facilities, the GW sky localization coverage, the timeline, and depth of the observations. As this event turned out to be a binary black hole merger, there is little expectation of a detectable electromagnetic (EM) signature. Nevertheless, this first broadband campaign to search for a counterpart of an Advanced LIGO source represents a milestone and highlights the broad capabilities of the transient astronomy community and the observing strategies that have been developed to pursue neutron star binary merger events. Detailed investigations of the EM data and results of the EM follow-up campaign are being disseminated in papers by the individual teams

    Localization and broadband follow-up of the gravitational-wave transient GW150914

    Get PDF
    A gravitational-wave transient was identified in data recorded by the Advanced LIGO detectors on 2015 September 14. The event candidate, initially designated G184098 and later given the name GW150914, is described in detail elsewhere. By prior arrangement, preliminary estimates of the time, significance, and sky location of the event were shared with 63 teams of observers covering radio, optical, near-infrared, X-ray, and gamma-ray wavelengths with ground- and space-based facilities. In this Letter we describe the low-latency analysis of the gravitational wave data and present the sky localization of the first observed compact binary merger. We summarize the follow-up observations reported by 25 teams via private Gamma-ray Coordinates Network Circulars, giving an overview of the participating facilities, the gravitational wave sky localization coverage, the timeline and depth of the observations. As this event turned out to be a binary black hole merger, there is little expectation of a detectable electromagnetic signature. Nevertheless, this first broadband campaign to search for a counterpart of an Advanced LIGO source represents a milestone and highlights the broad capabilities of the transient astronomy community and the observing strategies that have been developed to pursue neutron star binary merger events. Detailed investigations of the electromagnetic data and results of the electromagnetic follow-up campaign will be disseminated in the papers of the individual teams
    corecore