41 research outputs found

    CYP1A1 and CYP1B1-mediated biotransformation of the antitrypanosomal methamidoxime prodrug DB844 forms novel metabolites through intramolecular rearrangement

    Get PDF
    DB844 (CPD-594-12), N-methoxy-6-{5-[4-(N-methoxyamidino)phenyl]-furan-2-yl}- nicotinamidine, is an oral prodrug that has shown promising efficacy in both mouse and monkey models of second stage human African trypanosomiasis. However, gastrointestinal (GI) toxicity was observed with high doses in a vervet monkey safety study. In the current study, we compared the metabolism of DB844 by hepatic and extrahepatic cytochrome P450s to determine if differences in metabolite formation underlie the observed GI toxicity. DB844 undergoes sequential O-demethylation and N-dehydroxylation in the liver to form the active compound DB820 (CPD-593-12). However, extrahepatic CYP1A1 and CYP1B1 produced two new metabolites, MX and MY. Accurate mass and collision-induced dissociation mass spectrometry analyses of the metabolites supported proposed structures of MX and MY. In addition, MY was confirmed with a synthetic standard and detection of nitric oxide release when DB844 was incubated with CYP1A1. Taken altogether, we propose that MX is formed by insertion of an oxygen into the amidine C=N to form an oxaziridine, which is followed by intramolecular rearrangement of the adjacent O-methyl group and subsequent release of nitric oxide. The resulting imine ester, MX, is further hydrolyzed to form MY. These findings may contribute to furthering the understanding of toxicities associated with benzamidoxime- and benzmethamidoxime-containing molecules

    CYP1A1 and CYP1B1-Mediated Biotransformation of the Antitrypanosomal Methamidoxime Prodrug DB844 Forms Novel Metabolites Through Intramolecular Rearrangement

    Get PDF
    DB844 (CPD-594-12), N-methoxy-6-{5-[4-(N-methoxyamidino)phenyl]-furan-2-yl}-nicotinamidine, is an oral prodrug that has shown promising efficacy in both mouse and monkey models of second stage human African trypanosomiasis. However, gastrointestinal (GI) toxicity was observed with high doses in a vervet monkey safety study. In the current study, we compared the metabolism of DB844 by hepatic and extrahepatic cytochrome P450s to determine if differences in metabolite formation underlie the observed GI toxicity. DB844 undergoes sequential O-demethylation and N-dehydroxylation in the liver to form the active compound DB820 (CPD-593-12). However, extrahepatic CYP1A1 and CYP1B1 produced two new metabolites, MX and MY. Accurate mass and collision-induced dissociation mass spectrometry analyses of the metabolites supported proposed structures of MX and MY. In addition, MY was confirmed with a synthetic standard and detection of nitric oxide release when DB844 was incubated with CYP1A1. Taken altogether, we propose that MX is formed by insertion of an oxygen into the amidine C=N to form an oxaziridine, which is followed by intramolecular rearrangement of the adjacent O-methyl group and subsequent release of nitric oxide. The resulting imine ester, MX, is further hydrolyzed to form MY. These findings may contribute to furthering the understanding of toxicities associated with benzamidoxime- and benzmethamidoxime-containing molecules

    Multidimensional Model of Racial Identity: A Reconceptualization of African American Racial Identity

    Full text link
    Research on African American racial identity has utilized 2 distinct approaches. The mainstream approach has focused on universal properties associated with ethnic and racial identities. In contrast, the underground approach has focused on documenting the qualitative meaning of being African American, with an emphasis on the unique cultural and historical experiences of African Americans. The Multidimensional Model of Racial Identity (MMRI) represents a synthesis of the strengths of these two approaches. The underlying assumptions associated with the model are explored. The model proposes 4 dimensions of African American racial identity: salience, centrality, regard, and ideology. A description of these dimensions is provided along with a discussion of how they interact to influence behavior at the level of the event. We argue that the MMRI has the potential to make contributions to traditional research objectives of both approaches, as well as to provide the impetus to explore new questions.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/68695/2/10.1207_s15327957pspr0201_2.pd

    The Formation of Collective Silk Balls in the Spider Mite Tetranychus urticae Koch

    Get PDF
    Tetranychus urticae is a phytophagous mite that forms colonies of several thousand individuals. These mites construct a common web to protect the colony. When plants become overcrowded and food resources become scarce, individuals gather at the plant apex to form a ball composed of mites and their silk threads. This ball is a structure facilitating group dispersal by wind or animal transport. Until now, no quantitative study had been done on this collective form of migration. This is the first attempt to understand the mechanisms that underlie the emergence and growth of the ball. We studied this collective behaviour under laboratory conditions on standardized infested plants. Our results show that the collective displacement and the formation of balls result from a recruitment process: by depositing silk threads on their way up to the plant apex, mites favour and amplify the recruitment toward the balls. A critical threshold (quorum response) in the cumulative flow of mites must be reached to observe the emergence of a ball. At the beginning of the balls formation, mites form an aggregate. After 24 hours, the aggregated mites are trapped inside the silk balls by the complex network of silk threads and finally die, except for recently arrived individuals. The balls are mainly composed of immature stages. Our study reconstructs the key events that lead to the formation of silk balls. They suggest that the interplay between mites' density, plant morphology and plant density lead to different modes of dispersions (individual or collective) and under what conditions populations might adopt a collective strategy rather than one that is individually oriented. Moreover, our results lead to discuss two aspects of the cooperation and altruism: the importance of Allee effects during colonization of new plants and the importance of the size of a founding group

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    Get PDF
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research.Peer reviewe

    Rearrangement of the Vinylog of Benzpinacol 1-3

    No full text
    corecore