18 research outputs found

    H19 Antisense RNA Can Up-Regulate Igf2 Transcription by Activation of a Novel Promoter in Mouse Myoblasts

    Get PDF
    It was recently shown that a long non-coding RNA (lncRNA), that we named the 91H RNA (i.e. antisense H19 transcript), is overexpressed in human breast tumours and contributes in trans to the expression of the Insulin-like Growth Factor 2 (IGF2) gene on the paternal chromosome. Our preliminary experiments suggested that an H19 antisense transcript having a similar function may also be conserved in the mouse. In the present work, we further characterise the mouse 91H RNA and, using a genetic complementation approach in H19 KO myoblast cells, we show that ectopic expression of the mouse 91H RNA can up-regulate Igf2 expression in trans despite almost complete unmethylation of the Imprinting-Control Region (ICR). We then demonstrate that this activation occurs at the transcriptional level by activation of a previously unknown Igf2 promoter which displays, in mouse tissues, a preferential mesodermic expression (Pm promoter). Finally, our experiments indicate that a large excess of the H19 transcript can counteract 91H-mediated Igf2 activation. Our work contributes, in conjunction with other recent findings, to open new horizons to our understanding of Igf2 gene regulation and functions of the 91H/H19 RNAs in normal and pathological conditions

    Design of fluorescent materials for chemical sensing

    Full text link

    Development and Characterization of a Novel Wheat–Tetraploid <i>Thinopyrum elongatum</i> 6E (6D) Disomic Substitution Line with Stripe Rust Resistance at the Adult Stage

    No full text
    Stripe rust, which is caused by Puccinia striiformis f. sp. tritici, is one of the most devastating foliar diseases of common wheat worldwide. Breeding new wheat varieties with durable resistance is the most effective way of controlling the disease. Tetraploid Thinopyrum elongatum (2n = 4x = 28, EEEE) carries a variety of genes conferring resistance to multiple diseases, including stripe rust, Fusarium head blight, and powdery mildew, which makes it a valuable tertiary genetic resource for enhancing wheat cultivar improvement. Here, a novel wheat–tetraploid Th. elongatum 6E (6D) disomic substitution line (K17-1065-4) was characterized using genomic in situ hybridization and fluorescence in situ hybridization chromosome painting analyses. The evaluation of disease responses revealed that K17-1065-4 is highly resistant to stripe rust at the adult stage. By analyzing the whole-genome sequence of diploid Th. elongatum, we detected 3382 specific SSR sequences on chromosome 6E. Sixty SSR markers were developed, and thirty-three of them can accurately trace chromosome 6E of tetraploid Th. elongatum, which were linked to the disease resistance gene(s) in the wheat genetic background. The molecular marker analysis indicated that 10 markers may be used to distinguish Th. elongatum from other wheat-related species. Thus, K17-1065-4 carrying the stripe rust resistance gene(s) is a novel germplasm useful for breeding disease-resistant wheat cultivars. The molecular markers developed in this study may facilitate the mapping of the stripe rust resistance gene on chromosome 6E of tetraploid Th. elongatum
    corecore