15,577 research outputs found

    On the Potential of the Excluded Volume and Auto-Correlation as Neuromorphometric Descriptors

    Full text link
    This work investigates at what degree two neuromorphometric measurements, namely the autocorrelation and the excluded volume of a neuronal cell can influence the characterization and classification of such a type of cells. While the autocorrelation function presents good potential for quantifying the dendrite-dendrite connectivity of cells in mosaic tilings, the excluded volume, i.e. the amount of the surround space which is geometrically not accessible to an axon or dendrite, provides a complementary characterization of the cell connectivity. The potential of such approaches is illustrated with respect to real neuronal cells.Comment: 15 pages, 6 figure

    Saber: window-based hybrid stream processing for heterogeneous architectures

    Get PDF
    Modern servers have become heterogeneous, often combining multicore CPUs with many-core GPGPUs. Such heterogeneous architectures have the potential to improve the performance of data-intensive stream processing applications, but they are not supported by current relational stream processing engines. For an engine to exploit a heterogeneous architecture, it must execute streaming SQL queries with sufficient data-parallelism to fully utilise all available heterogeneous processors, and decide how to use each in the most effective way. It must do this while respecting the semantics of streaming SQL queries, in particular with regard to window handling. We describe SABER, a hybrid high-performance relational stream processing engine for CPUs and GPGPUs. SABER executes windowbased streaming SQL queries in a data-parallel fashion using all available CPU and GPGPU cores. Instead of statically assigning query operators to heterogeneous processors, SABER employs a new adaptive heterogeneous lookahead scheduling strategy, which increases the share of queries executing on the processor that yields the highest performance. To hide data movement costs, SABER pipelines the transfer of stream data between different memory types and the CPU/GPGPU. Our experimental comparison against state-ofthe-art engines shows that SABER increases processing throughput while maintaining low latency for a wide range of streaming SQL queries with small and large windows sizes

    Towards an adaptive web based learning environment for treating and diagnosing chronic wounds

    Get PDF
    A wise decision when choosing adequate products to treat chronic wounds depends on proper diagnosis and characterization of the chronic wound. Developing skills for treating and diagnosing chronic wounds requires not only academic knowledge, but also other types of knowledge not easily acquired through traditional instructional methodologies. The expertise obtained by individuals, when they are solving real life practical cases, is very important to diagnose and correctly treat chronic wounds. This additional empirical knowledge is not easily transmitted in classrooms, and so the academic instruction should be completed with real life practical examples and practical cases. The e-Fer Web Based Learning Environment for chronic wounds, is a case based learning tool for assisting nursing students to develop skills for diagnosing and treating chronic wounds. This paper will briefly describe some characteristics of the platform, and our main goal is to present our novel approach to implement the adaptive version of the learning environment. We are also going to discuss our user model, and the types of learning support that we decided to implement in the system

    Chemical trends in the Galactic halo from APOGEE data

    Get PDF
    Indexación: Web of Science; Scopus.The galaxy formation process in the A cold dark matter scenario can be constrained from the analysis of stars in the Milky Way's halo system. We examine the variation of chemical abundances in distant halo stars observed by the Apache Point Observatory Galactic Evolution Experiment ( APOGEE), as a function of distance from the Galactic Centre ( r) and iron abundance ([M/H]), in the range 5 less than or similar to r less than or similar to 30 kpc and - 2.5 15 kpc and [M/H] > - 1.1 (larger in the case of O, Mg, and S) with respect to the nearest halo stars. This result confirms previous claims for low-alpha stars found at larger distances. Chemical differences in elements with other nucleosynthetic origins (Ni, K, Na, and Al) are also detected. C and N do not provide reliable information about the interstellar medium from which stars formed because our sample comprises red giant branch and asymptotic giant branch stars and can experience mixing of material to their surfaces.https://academic.oup.com/mnras/article-lookup/doi/10.1093/mnras/stw286

    Non-reciprocal magnons in a two dimensional crystal with off-plane magnetization

    Get PDF
    Nonreciprocal spin waves have a chiral asymmetry so that their energy is different for two opposite wave vectors. They are found in atomically thin ferromagnetic overlayers with in-plane magnetization and are linked to the antisymmetric Dzyaloshinskii-Moriya surface exchange. We use an itinerant fermion theory based on first-principles calculations to predict that nonreciprocal magnons can occur in Fe3GeTe2, the first stand-alone metallic two-dimensional crystal with out-of-plane magnetization. We find that both the energy and lifetime of magnons are nonreciprocal, and we predict that acoustic magnons can have lifetimes up to hundreds of picoseconds, orders of magnitude larger than in other conducting magnets.- N.M.R.P. acknowledges support from the European Commission through the project Graphene-Driven Revolutions in ICT and Beyond (Ref. No. 881603 -Core 3), and the Portuguese Foundation for Science and Technology (FCT) in the framework of the Strategic Financing UID/FIS/04650/2013, COMPETE2020, PORTUGAL2020, FEDER, and the Portuguese Foundation for Science and Technology (FCT) through Projects No. PTDC/FISNAN/3668/2013 and No. POCI-01-0145-FEDER-028114. J.F.-R. acknowledges financial support from FCT for Project No. UTAP-EXPL/NTec/0046/2017, as well as Generalitat Valenciana funding Prometeo2017/139 and MINECO-Spain (Grant No. MAT2016-78625-C2). A.T.C. acknowledges the use of computer resources at MareNostrum and technical support provided by the Barcelona Supercomputing Center (RES-FI-2019-2-0034, RES-FI-2019-3-0019)

    A Three-Dimensional Dynamic Supramolecular "Sticky Fingers" Organic Framework.

    Get PDF
    Engineering high-recognition host-guest materials is a burgeoning area in basic and applied research. The challenge of exploring novel porous materials with advanced functionalities prompted us to develop dynamic crystalline structures promoted by soft interactions. The first example of a pure molecular dynamic crystalline framework is demonstrated, which is held together by means of weak "sticky fingers" van der Waals interactions. The presented organic-fullerene-based material exhibits a non-porous dynamic crystalline structure capable of undergoing single-crystal-to-single-crystal reactions. Exposure to hydrazine vapors induces structural and chemical changes that manifest as toposelective hydrogenation of alternating rings on the surface of the [60]fullerene. Control experiments confirm that the same reaction does not occur when performed in solution. Easy-to-detect changes in the macroscopic properties of the sample suggest utility as molecular sensors or energy-storage materials

    Rheology of magmas with bimodal crystal size and shape distributions: insights from analog experiments

    Get PDF
    Magmas in volcanic conduits commonly contain microlites in association with preexisting phenocrysts, as often indicated by volcanic rock textures. In this study, we present two different experiments that inves- tigate the flow behavior of these bidisperse systems. In the first experiments, rotational rheometric methods are used to determine the rheology of monodisperse and polydisperse suspensions consisting of smaller, prolate particles (microlites) and larger, equant particles (phenocrysts) in a bubble‐free Newtonian liquid (silicate melt). Our data show that increasing the relative proportion of prolate microlites to equant pheno- crysts in a magma at constant total particle content can increase the relative viscosity by up to three orders of magnitude. Consequently, the rheological effect of particles in magmas cannot be modeled by assuming a monodisperse population of particles. We propose a new model that uses interpolated parameters based on the relative proportions of small and large particles and produces a considerably improved fit to the data than earlier models. In a second series of experiments we investigate the textures produced by shearing bimodal suspensions in gradually solidifying epoxy resin in a concentric cylinder setup. The resulting textures show the prolate particles are aligned with the flow lines and spherical particles are found in well‐organized strings, with sphere‐depleted shear bands in high‐shear regions. These observations may explain the measured variation in the shear thinning and yield stress behavior with increasing solid fraction and particle aspect ratio. The implications for magma flow are discussed, and rheological results and tex- tural observations are compared with observations on natural samples
    corecore