6,323 research outputs found

    Every hierarchy of beliefs is a type

    Get PDF
    When modeling game situations of incomplete information one usually considers the players' hierarchies of beliefs, a source of all sorts of complications. Hars\'anyi (1967-68)'s idea henceforth referred to as the "Hars\'anyi program" is that hierarchies of beliefs can be replaced by "types". The types constitute the "type space". In the purely measurable framework Heifetz and Samet (1998) formalize the concept of type spaces and prove the existence and the uniqueness of a universal type space. Meier (2001) shows that the purely measurable universal type space is complete, i.e., it is a consistent object. With the aim of adding the finishing touch to these results, we will prove in this paper that in the purely measurable framework every hierarchy of beliefs can be represented by a unique element of the complete universal type space.Comment: 19 page

    Generalized Descents and Normality

    Full text link
    We use Janson's dependency criterion to prove that the distribution of dd-descents of permutations of length nn converge to a normal distribution as nn goes to infinity. We show that this remains true even if dd is allowed to grow with nn, up to a certain degree.Comment: 7 page

    Lower Bounds for RAMs and Quantifier Elimination

    Full text link
    We are considering RAMs NnN_{n}, with wordlength n=2dn=2^{d}, whose arithmetic instructions are the arithmetic operations multiplication and addition modulo 2n2^{n}, the unary function min{2x,2n1} \min\lbrace 2^{x}, 2^{n}-1\rbrace, the binary functions x/y\lfloor x/y\rfloor (with x/0=0\lfloor x/0 \rfloor =0), max(x,y)\max(x,y), min(x,y)\min(x,y), and the boolean vector operations ,,¬\wedge,\vee,\neg defined on 0,10,1 sequences of length nn. It also has the other RAM instructions. The size of the memory is restricted only by the address space, that is, it is 2n2^{n} words. The RAMs has a finite instruction set, each instruction is encoded by a fixed natural number independently of nn. Therefore a program PP can run on each machine NnN_{n}, if n=2dn=2^{d} is sufficiently large. We show that there exists an ϵ>0\epsilon>0 and a program PP, such that it satisfies the following two conditions. (i) For all sufficiently large n=2dn=2^{d}, if PP running on NnN_{n} gets an input consisting of two words aa and bb, then, in constant time, it gives a 0,10,1 output Pn(a,b)P_{n}(a,b). (ii) Suppose that QQ is a program such that for each sufficiently large n=2dn=2^{d}, if QQ, running on NnN_{n}, gets a word aa of length nn as an input, then it decides whether there exists a word bb of length nn such that Pn(a,b)=0P_{n}(a,b)=0. Then, for infinitely many positive integers dd, there exists a word aa of length n=2dn=2^{d}, such that the running time of QQ on NnN_{n} at input aa is at least ϵ(logd)12(loglogd)1\epsilon (\log d)^{\frac{1}{2}} (\log \log d)^{-1}
    corecore