401 research outputs found

    Seasonal Variation in Terrestrial Invertebrate Subsidies to Tropical Streams and Implications for the Feeding Ecology of Hart’s Rivulus (Anablepsoides hartii)

    Get PDF
    Terrestrial invertebrates are important subsidies to fish diets, though their seasonal dynamics and importance to tropical stream consumers are particularly understudied. In this year-round study of terrestrial invertebrate input to two Trinidadian headwater streams with different forest canopy densities, we sought to (a) measure the mass and composition of terrestrial inputs with fall-in traps to evaluate the influences of seasonality, canopy cover, and rainfall intensity, and; (b) compare terrestrial and benthic prey importance to Anablepsoides hartii(Hart’s Rivulus), the dominant invertivorous fish in these streams, by concurrently measuring benthic and drifting invertebrate standing stocks and the volume and composition of invertebrates in Rivulus guts throughout the year. The biomass of terrestrial invertebrate fall-in was 53% higher in the wet versus dry season; in particular, ant input was 320% higher. Ant biomass fall-in also increased with the density of canopy cover among sampling locations within both streams. Greater precipitation correlated with increased ant inputs to the more open-canopied stream and increased inputs of winged insects in the more closed canopy stream. Concurrently, the biomass of benthic invertebrates was reduced by more than half in the wet season in both streams. We detected no differences in the total volume of terrestrial prey in Rivulus diets between seasons, though ants were a greater proportion of their diet in the wet season. In contrast, benthic prey were nearly absent from Rivulus diets in the wet season in both streams. We conclude that terrestrial invertebrates are a substantial year-round prey subsidy for invertivores in tropical stream ecosystems like those we studied, which may contrast to most temperate streams where such terrestrial inputs are significantly reduced in the cold season. Interestingly, the strongest seasonal pattern in these tropical streams was observed in benthic invertebrate biomass which was greatly reduced and almost absent from Rivulus diets during the wet season. This pattern is essentially the inverse of the pattern observed in many temperate streams and highlights the need for additional studies in tropical ecosystems to better understand how spatial and temporal variation in terrestrial subsidies and benthic prey populations combine to influence consumer diets and the structure of tropical stream food webs

    The role of growth and maturation during adolescence on team-selection and short-term sports participation

    Get PDF
    Background: During adolescence, deselection from sport occurs during team try-outs when month of birth, stage of growth and maturation may influence selection.Aim: The purpose of this study was to identify differences in growth and maturity related factors between those selected and deselected in youth sports teams and identify short-term associations with continued participation.Subjects and methods: Eight hundred and seventy participants, aged 11–17 years, were recruited from six sports try-outs in Saskatchewan, Canada: baseball, basketball, football, hockey, soccer and volleyball. Two hundred and forty-four of the initial 870 (28%) returned for follow-up at 36 months. Chronological (years from birth), biological (years from age at peak height velocity (APHV)) and relative (month of birth as it relates to the selection band) ages were calculated from measures of date of birth, date of test, height, sitting height and weight. Parental heights were measured or recalled and participant’s adult height predicted. Reference standards were used to calculate z-scores. Sports participation was self-reported at try-outs and at 36-month follow-up.Results: There was an over-representation of players across all sports born in the first and second quartiles of the selection bands (p < 0.05), whether they were selected or deselected. z-scores for predicted adult height ranged from 0.1 (1.1) to 1.8 (1.2) and were significantly different between sports (p < 0.05). Height and APHV differences (p < 0.05) were found between selected and deselected male participants. In females only weight differed between selected and deselected female hockey players (p < 0.05); no further differences were found between selected and deselected female participants. Four per cent of deselected athletes exited sports participation and 68% of deselected athletes remained in the same sport at 36 months, compared with 84% of selected athletes who remained in the same sport.Conclusions: It was found that youth who attended sports team’s try-outs were more likely to be born early in the selection year, be tall for their age, and in some sports early maturers. The majority of both the selected and deselected participants continued to participate in sport 36 months after try-outs, with the majority continuing to participate in their try-out sport

    Genetic Connectivity and Diversity of a Protected, Habitat-Forming Species:Evidence Demonstrating the Need for Wider Environmental Protection and Integration of the Marine Protected Area Network

    Get PDF
    Funding Information: This work was largely funded by Heriot-Watt University (James Watt Scholarship) and NatureScot (formerly Scottish Natural Heritage). Additional funding was received from the MASTS pooling initiative (The Marine Alliance for Science and Technology for Scotland) and their support is gratefully acknowledged. MASTS was funded by the Scottish Funding Council (grant reference HR09011) and contributing institutions.Peer reviewedPublisher PD

    Cryptic Plutella species show deep divergence despite the capacity to hybridize

    Get PDF
    Background: Understanding genomic and phenotypic diversity among cryptic pest taxa has important implications for the management of pests and diseases. The diamondback moth, Plutella xylostella L., has been intensively studied due to its ability to evolve insecticide resistance and status as the world’s most destructive pest of brassicaceous crops. The surprise discovery of a cryptic species endemic to Australia, Plutella australiana Landry & Hebert, raised questions regarding the distribution, ecological traits and pest status of the two species, the capacity for gene flow and whether specific management was required. Here, we collected Plutella from wild and cultivated brassicaceous plants from 75 locations throughout Australia and screened 1447 individuals to identify mtDNA lineages and Wolbachia infections. We genotyped genome-wide SNP markers using RADseq in coexisting populations of each species. In addition, we assessed reproductive compatibility in crossing experiments and insecticide susceptibility phenotypes using bioassays. Results: The two Plutella species coexisted on wild brassicas and canola crops, but only 10% of Plutella individuals were P. australiana. This species was not found on commercial Brassica vegetable crops, which are routinely sprayed with insecticides. Bioassays found that P. australiana was 19-306 fold more susceptible to four commonly-used insecticides than P. xylostella. Laboratory crosses revealed that reproductive isolation was incomplete but directionally asymmetric between the species. However, genome-wide nuclear SNPs revealed striking differences in genetic diversity and strong population structure between coexisting wild populations of each species. Nuclear diversity was 1.5-fold higher in P. australiana, yet both species showed limited variation in mtDNA. Infection with a single Wolbachia subgroup B strain was fixed in P. australiana, suggesting that a selective sweep contributed to low mtDNA diversity, while a subgroup A strain infected just 1.5% of P. xylostella. Conclusions: Despite sympatric distributions and the capacity to hybridize, strong genomic and phenotypic divergence exists between these Plutella species that is consistent with contrasting colonization histories and reproductive isolation after secondary contact. Although P. australiana is a potential pest of brassicaceous crops, it is of secondary importance to P. xylostella.Kym D. Perry, Gregory J. Baker, Kevin J. Powis, Joanne K. Kent, Christopher M. Ward and Simon W. Baxte

    Steps towards Lattice Virasoro Algebras: su(1,1)

    Get PDF
    An explicit construction is presented for the action of the su(1,1) subalgebra of the Virasoro algebra on path spaces for the c(2,q) minimal models. In the case of the Lee-Yang edge singularity, we show how this action already fixes the central charge of the full Virasoro algebra. For this case, we additionally construct a representation in terms of generators of the corresponding Temperley-Lieb algebra.Comment: 15 pages, plain TeX, 4 typos correcte

    Evidence for suppression of immunity as a driver for genomic introgressions and host range expansion in races of Albugo candida, a generalist parasite

    Get PDF
    How generalist parasites with wide host ranges can evolve is a central question in parasite evolution. Albugo candida is an obligate biotrophic parasite that consists of many physiological races that each specialize on distinct Brassicaceae host species. By analyzing genome sequence assemblies of five isolates, we show they represent three races that are genetically diverged by ∼1%. Despite this divergence, their genomes are mosaic-like, with ∼25% being introgressed from other races. Sequential infection experiments show that infection by adapted races enables subsequent infection of hosts by normally non-infecting races. This facilitates introgression and the exchange of effector repertoires, and may enable the evolution of novel races that can undergo clonal population expansion on new hosts. We discuss recent studies on hybridization in other eukaryotes such as yeast, Heliconius butterflies, Darwin’s finches, sunflowers and cichlid fishes, and the implications of introgression for pathogen evolution in an agro-ecological environment

    Longitudinal Cytokine Profiling Identifies GRO-α and EGF as Potential Biomarkers of Disease Progression in Essential Thrombocythemia.

    Get PDF
    Myeloproliferative neoplasms (MPNs) are characterized by deregulation of mature blood cell production and increased risk of myelofibrosis (MF) and leukemic transformation. Numerous driver mutations have been identified but substantial disease heterogeneity remains unexplained, implying the involvement of additional as yet unidentified factors. The inflammatory microenvironment has recently attracted attention as a crucial factor in MPN biology, in particular whether inflammatory cytokines and chemokines contribute to disease establishment or progression. Here we present a large-scale study of serum cytokine profiles in more than 400 MPN patients and identify an essential thrombocythemia (ET)-specific inflammatory cytokine signature consisting of Eotaxin, GRO-α, and EGF. Levels of 2 of these markers (GRO-α and EGF) in ET patients were associated with disease transformation in initial sample collection (GRO-α) or longitudinal sampling (EGF). In ET patients with extensive genomic profiling data (n = 183) cytokine levels added significant prognostic value for predicting transformation from ET to MF. Furthermore, CD56+CD14+ pro-inflammatory monocytes were identified as a novel source of increased GRO-α levels. These data implicate the immune cell microenvironment as a significant player in ET disease evolution and illustrate the utility of cytokines as potential biomarkers for reaching beyond genomic classification for disease stratification and monitoring.The serum cytokine studies were supported by a research grant from the Rosetrees Trust. NFØ was supported by grants from the Danish Lundbeck Foundation and Danish Cancer Society, J.G. was supported by fellowships from Bloodwise and the Kay Kendall Leukaemia Fund; and M.S.S. is the recipient of a Biotechnology and Biological Sciences Research Council Industrial Collaborative Awards in Science and Engineering PhD Studentship. Work in the R.C.S. laboratory was supported by grants from the Stiftung Blutspendezentrum SRK beider Basel, the Swiss National Science Foundation (31003A-147016/1 and 31003A_166613), and the Swiss Cancer League (KLS-2950-02-2012 and KFS-3655-02-2015). A.K. was supported by the Else Kröner-Fresenius Foundation. Work in the A.R.G. laboratory is supported by the Wellcome Trust, Bloodwise, Cancer Research UK, the Kay Kendall Leukaemia Fund, and the Leukemia and Lymphoma Society of America. Work in the D.G.K. laboratory is supported by a Bloodwise Bennett Fellowship (15008), a European Hematology Association Non-Clinical Advanced Research Fellowship, and an ERC Starting Grant (ERC-2016-STG–715371). D.G.K. and A.R.G. are supported by a core support grant from the Wellcome Trust and Medical Research Council to the Wellcome MRC Cambridge Stem Cell Institute, the National Institute for Health Research Cambridge Biomedical Research Centre, and the CRUK Cambridge Cancer Centre
    corecore