30 research outputs found

    openBIS: a flexible framework for managing and analyzing complex data in biology research

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Modern data generation techniques used in distributed systems biology research projects often create datasets of enormous size and diversity. We argue that in order to overcome the challenge of managing those large quantitative datasets and maximise the biological information extracted from them, a sound information system is required. Ease of integration with data analysis pipelines and other computational tools is a key requirement for it.</p> <p>Results</p> <p>We have developed openBIS, an open source software framework for constructing user-friendly, scalable and powerful information systems for data and metadata acquired in biological experiments. openBIS enables users to collect, integrate, share, publish data and to connect to data processing pipelines. This framework can be extended and has been customized for different data types acquired by a range of technologies.</p> <p>Conclusions</p> <p>openBIS is currently being used by several SystemsX.ch and EU projects applying mass spectrometric measurements of metabolites and proteins, High Content Screening, or Next Generation Sequencing technologies. The attributes that make it interesting to a large research community involved in systems biology projects include versatility, simplicity in deployment, scalability to very large data, flexibility to handle any biological data type and extensibility to the needs of any research domain.</p

    The 1994 international transatlantic two-way satellite time and frequency transfer experiment: Preliminary results

    Get PDF
    The international transatlantic time and frequency transfer experiment was designed by participating laboratories and has been implemented during 1994 to test the international communications path involving a large number of transmitting stations. This paper will present empirically determined clock and time scale differences, time and frequency domain instabilities, and a representative power spectral density analysis. The experiments by the method of co-location which will allow absolute calibration of the participating laboratories have been performed. Absolute time differences and accuracy levels of this experiment will be assessed in the near future

    Implementing systems medicine within healthcare

    Get PDF
    Comentari editorialThe cause of a complex disease cannot be pinpointed to a single origin; rather, a highly complex network of many factors that interact on different levels over time and space is disturbed. This complexity requires novel approaches to diagnosis, treatment, and prevention. To foster the necessary shift to a pro-active systems medicine, proof-of-concept studies are needed. Here, we highlight several systems approaches that have been shown to work within the field of respiratory medicine, and we propose the next steps for broader implementation

    Informing epidemic (research) responses in a timely fashion by knowledge management - a Zika virus use case

    Get PDF
    The response of pathophysiological research to emerging epidemics often occurs after the epidemic and, as a consequence, has little to no impact on improving patient outcomes or on developing high-quality evidence to inform clinical management strategies during the epidemic. Rapid and informed guidance of epidemic (research) responses to severe infectious disease outbreaks requires quick compilation and integration of existing pathophysiological knowledge. As a case study we chose the Zika virus (ZIKV) outbreak that started in 2015 to develop a proof-of-concept knowledge repository. To extract data from available sources and build a computationally tractable and comprehensive molecular interaction map we applied generic knowledge management software for literature mining, expert knowledge curation, data integration, reporting and visualization. A multi-disciplinary team of experts, including clinicians, virologists, bioinformaticians and knowledge management specialists, followed a pre-defined workflow for rapid integration and evaluation of available evidence. While conventional approaches usually require months to comb through the existing literature, the initial ZIKV KnowledgeBase (ZIKA KB) was completed within a few weeks. Recently we updated the ZIKA KB with additional curated data from the large amount of literature published since 2016 and made it publicly available through a web interface together with a step-by-step guide to ensure reproducibility of the described use case. In addition, a detailed online user manual is provided to enable the ZIKV research community to generate hypotheses, share knowledge, identify knowledge gaps, and interactively explore and interpret data. A workflow for rapid response during outbreaks was generated, validated and refined and is also made available. The process described here can be used for timely structuring of pathophysiological knowledge for future threats. The resulting structured biological knowledge is a helpful tool for computational data analysis and generation of predictive models and opens new avenues for infectious disease research. ZIKV Knowledgebase is available at www.zikaknowledgebase.eu

    Modified Gravity and Cosmology

    Get PDF
    In this review we present a thoroughly comprehensive survey of recent work on modified theories of gravity and their cosmological consequences. Amongst other things, we cover General Relativity, Scalar-Tensor, Einstein-Aether, and Bimetric theories, as well as TeVeS, f(R), general higher-order theories, Horava-Lifschitz gravity, Galileons, Ghost Condensates, and models of extra dimensions including Kaluza-Klein, Randall-Sundrum, DGP, and higher co-dimension braneworlds. We also review attempts to construct a Parameterised Post-Friedmannian formalism, that can be used to constrain deviations from General Relativity in cosmology, and that is suitable for comparison with data on the largest scales. These subjects have been intensively studied over the past decade, largely motivated by rapid progress in the field of observational cosmology that now allows, for the first time, precision tests of fundamental physics on the scale of the observable Universe. The purpose of this review is to provide a reference tool for researchers and students in cosmology and gravitational physics, as well as a self-contained, comprehensive and up-to-date introduction to the subject as a whole.Comment: 312 pages, 15 figure

    The DEAD-box helicase DDX3X is a critical component of the TANK-binding kinase 1-dependent innate immune response

    Get PDF
    TANK-binding kinase 1 (TBK1) is of central importance for the induction of type-I interferon (IFN) in response to pathogens. We identified the DEAD-box helicase DDX3X as an interaction partner of TBK1. TBK1 and DDX3X acted synergistically in their ability to stimulate the IFN promoter, whereas RNAi-mediated reduction of DDX3X expression led to an impairment of IFN production. Chromatin immunoprecipitation indicated that DDX3X is recruited to the IFN promoter upon infection with Listeria monocytogenes, suggesting a transcriptional mechanism of action. DDX3X was found to be a TBK1 substrate in vitro and in vivo. Phosphorylation-deficient mutants of DDX3X failed to synergize with TBK1 in their ability to stimulate the IFN promoter. Overall, our data imply that DDX3X is a critical effector of TBK1 that is necessary for type I IFN induction

    COVID19 Disease Map, a computational knowledge repository of virus-host interaction mechanisms.

    Get PDF
    Funder: Bundesministerium für Bildung und ForschungFunder: Bundesministerium für Bildung und Forschung (BMBF)We need to effectively combine the knowledge from surging literature with complex datasets to propose mechanistic models of SARS-CoV-2 infection, improving data interpretation and predicting key targets of intervention. Here, we describe a large-scale community effort to build an open access, interoperable and computable repository of COVID-19 molecular mechanisms. The COVID-19 Disease Map (C19DMap) is a graphical, interactive representation of disease-relevant molecular mechanisms linking many knowledge sources. Notably, it is a computational resource for graph-based analyses and disease modelling. To this end, we established a framework of tools, platforms and guidelines necessary for a multifaceted community of biocurators, domain experts, bioinformaticians and computational biologists. The diagrams of the C19DMap, curated from the literature, are integrated with relevant interaction and text mining databases. We demonstrate the application of network analysis and modelling approaches by concrete examples to highlight new testable hypotheses. This framework helps to find signatures of SARS-CoV-2 predisposition, treatment response or prioritisation of drug candidates. Such an approach may help deal with new waves of COVID-19 or similar pandemics in the long-term perspective

    Drug-target identification in COVID-19 disease mechanisms using computational systems biology approaches

    Get PDF
    IntroductionThe COVID-19 Disease Map project is a large-scale community effort uniting 277 scientists from 130 Institutions around the globe. We use high-quality, mechanistic content describing SARS-CoV-2-host interactions and develop interoperable bioinformatic pipelines for novel target identification and drug repurposing. MethodsExtensive community work allowed an impressive step forward in building interfaces between Systems Biology tools and platforms. Our framework can link biomolecules from omics data analysis and computational modelling to dysregulated pathways in a cell-, tissue- or patient-specific manner. Drug repurposing using text mining and AI-assisted analysis identified potential drugs, chemicals and microRNAs that could target the identified key factors.ResultsResults revealed drugs already tested for anti-COVID-19 efficacy, providing a mechanistic context for their mode of action, and drugs already in clinical trials for treating other diseases, never tested against COVID-19. DiscussionThe key advance is that the proposed framework is versatile and expandable, offering a significant upgrade in the arsenal for virus-host interactions and other complex pathologies

    Abstracts from the 8th International Conference on cGMP Generators, Effectors and Therapeutic Implications

    Get PDF
    This work was supported by a restricted research grant of Bayer AG

    An efficient tandem affinity purification procedure for interaction proteomics in mammalian cells

    No full text
    Tandem affinity purification (TAP) is a generic two-step affinity purification protocol that enables the isolation of protein complexes under close-to-physiological conditions for subsequent analysis by mass spectrometry. Although TAP was instrumental in elucidating the yeast cellular machinery, in mammalian cells the method suffers from a low overall yield. We designed several dual-affinity tags optimized for use in mammalian cells and compared the efficiency of each tag to the conventional TAP tag. A tag based on protein G and the streptavidin-binding peptide (GS-TAP) resulted in a tenfold increase in protein-complex yield and improved the specificity of the procedure. This allows purification of protein complexes that were hitherto not amenable to TAP and use of less starting material, leading to higher success rates and enabling systematic interaction proteomics projects. Using the well-characterized Ku70-Ku80 protein complex as an example, we identified both core elements as well as new candidate effectors
    corecore