16 research outputs found

    Testing the Coulomb/Accessible Surface Area solvent model for protein stability, ligand binding, and protein design

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Protein structure prediction and computational protein design require efficient yet sufficiently accurate descriptions of aqueous solvent. We continue to evaluate the performance of the Coulomb/Accessible Surface Area (CASA) implicit solvent model, in combination with the Charmm19 molecular mechanics force field. We test a set of model parameters optimized earlier, and we also carry out a new optimization in this work, using as a target a set of experimental stability changes for single point mutations of various proteins and peptides. The optimization procedure is general, and could be used with other force fields. The computation of stability changes requires a model for the unfolded state of the protein. In our approach, this state is represented by tripeptide structures of the sequence Ala-X-Ala for each amino acid type X. We followed an iterative optimization scheme which, at each cycle, optimizes the solvation parameters and a set of tripeptide structures for the unfolded state. This protocol uses a set of 140 experimental stability mutations and a large set of tripeptide conformations to find the best tripeptide structures and solvation parameters.</p> <p>Results</p> <p>Using the optimized parameters, we obtain a mean unsigned error of 2.28 kcal/mol for the stability mutations. The performance of the CASA model is assessed by two further applications: (i) calculation of protein-ligand binding affinities and (ii) computational protein design. For these two applications, the previous parameters and the ones optimized here give a similar performance. For ligand binding, we obtain reasonable agreement with a set of 55 experimental mutation data, with a mean unsigned error of 1.76 kcal/mol with the new parameters and 1.47 kcal/mol with the earlier ones. We show that the optimized CASA model is not inferior to the Generalized Born/Surface Area (GB/SA) model for the prediction of these binding affinities. Likewise, the new parameters perform well for the design of 8 SH3 domain proteins where an average of 32.8% sequence identity relative to the native sequences was achieved. Further, it was shown that the computed sequences have the character of naturally-occuring homologues of the native sequences.</p> <p>Conclusion</p> <p>Overall, the two CASA variants explored here perform very well for a wide variety of applications. Both variants provide an efficient solvent treatment for the computational engineering of ligands and proteins.</p

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    Get PDF
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research.Peer reviewe

    Reactivity and selectivity in cytochrome P450 enzymes and haem peroxidases

    No full text
    EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Regioselectivity of CYP2B6 : homology modelling, molecular dynamics simulation, docking

    No full text
    Human cytochrome P450 (CYP) 2B6 activates the anticancer prodrug cyclophosphamide (CPA) by 4-hydroxylation. In contrast, the same enzyme catalyzes N-deethylation of a structural isomer, the prodrug ifos-famide (IFA) thus causing severe adverse drug effects. To model the molecular interactions leading to a switch in regioselectivity, the structure of CYP2B6 was modelled based on the structure of rabbit CYP2C5. We mod-elled the lacking 22 residue loop in CYP2C5 between helix F and G (F-G loop) which is not resolved in the X-ray structure by molecular dynamics (MD) simulations using a simulated annealing protocol. The modelled conformation of the loop was validated by unconstrained MD simulations of the complete enzymes (CYP2C5 and CYP2B6) in water for 70 and 120 ps, respectively. The simulations were stable and led to a backbone r.m.s. deviation of 1.7 Å between the two CYPs. The shape of the substrate binding site of CYP2B6 was further analyzed. It consists of three well-defined hydro-phobic binding pockets adjacent to the catalytic heme. Size, shape and hydrophobicity of these pockets was compared to the shapes of the two structurally isomeric substrates. In their preferred orientation in the binding site both substrates fill all three binding pockets without repulsive interactions. The distance to the heme iron is short enough for 4-hydroxylation and N-deethylation to occur for CPA and IFA, respectively. However, if the substrates are docked in the non-preferred orientation (such that 4-hydroxylation and N-deethylation would occur for IFA and CPA, respectively), one pocket is left empty, and clashes were observed between the substrates

    Quantum Mechanics/Molecular Mechanics Modeling of Regioselectivity of Drug Metabolism in Cytochrome P450 2C9

    Get PDF
    [Image: see text] Cytochrome P450 enzymes (P450s) are important in drug metabolism and have been linked to adverse drug reactions. P450s display broad substrate reactivity, and prediction of metabolites is complex. QM/MM studies of P450 reactivity have provided insight into important details of the reaction mechanisms and have the potential to make predictions of metabolite formation. Here we present a comprehensive study of the oxidation of three widely used pharmaceutical compounds (S-ibuprofen, diclofenac, and S-warfarin) by one of the major drug-metabolizing P450 isoforms, CYP2C9. The reaction barriers to substrate oxidation by the iron-oxo species (Compound I) have been calculated at the B3LYP-D/CHARMM27 level for different possible metabolism sites for each drug, on multiple pathways. In the cases of ibuprofen and warfarin, the process with the lowest activation energy is consistent with the experimentally preferred metabolite. For diclofenac, the pathway leading to the experimentally observed metabolite is not the one with the lowest activation energy. This apparent inconsistency with experiment might be explained by the two very different binding modes involved in oxidation at the two competing positions. The carboxylate of diclofenac interacts strongly with the CYP2C9 Arg108 side chain in the transition state for formation of the observed metabolite—but not in that for the competing pathway. We compare reaction barriers calculated both in the presence and in the absence of the protein and observe a marked improvement in selectivity prediction ability upon inclusion of the protein for all of the substrates studied. The barriers calculated with the protein are generally higher than those calculated in the gas phase. This suggests that active-site residues surrounding the substrate play an important role in controlling selectivity in CYP2C9. The results show that inclusion of sampling (particularly) and dispersion effects is important in making accurate predictions of drug metabolism selectivity of P450s using QM/MM methods
    corecore