108 research outputs found
The Spread of Inequality
The causes of socioeconomic inequality have been debated since the time of Plato. Many reasons for the development of stratification have been proposed, from the need for hierarchical control over large-scale irrigation systems to the accumulation of small differences in wealth over time via inheritance processes. However, none of these explains how unequal societies came to completely displace egalitarian cultural norms over time. Our study models demographic consequences associated with the unequal distribution of resources in stratified societies. Agent-based simulation results show that in constant environments, unequal access to resources can be demographically destabilizing, resulting in the outward migration and spread of such societies even when population size is relatively small. In variable environments, stratified societies spread more and are also better able to survive resource shortages by sequestering mortality in the lower classes. The predictions of our simulation are provided modest support by a range of existing empirical studies. In short, the fact that stratified societies today vastly outnumber egalitarian societies may not be due to the transformation of egalitarian norms and structures, but may instead reflect the more rapid migration of stratified societies and consequent conquest or displacement of egalitarian societies over time
Risk-taking attitudes and their association with process and outcomes of cardiac care: a cohort study
<p>Abstract</p> <p>Background</p> <p>Prior research reveals that processes and outcomes of cardiac care differ across sociodemographic strata. One potential contributing factor to such differences is the personality traits of individuals within these strata. We examined the association between risk-taking attitudes and cardiac patients' clinical and demographic characteristics, the likelihood of undergoing invasive cardiac procedures and survival.</p> <p>Methods</p> <p>We studied a large inception cohort of patients who underwent cardiac catheterization between July 1998 and December 2001. Detailed clinical and demographic data were collected at time of cardiac catheterization and through a mailed survey one year post-catheterization. The survey included three general risk attitude items from the Jackson Personality Inventory. Patients' (n = 6294) attitudes toward risk were categorized as risk-prone versus non-risk-prone and were assessed for associations with baseline clinical and demographic characteristics, treatment received (i.e., medical therapy, coronary artery bypass graft (CABG) surgery, percutaneous coronary intervention (PCI)), and survival (to December 2005).</p> <p>Results</p> <p>2827 patients (45%) were categorized as risk-prone. Having risk-prone attitudes was associated with younger age (p < .001), male sex (p < .001), current smoking (p < .001) and higher household income (p < .001). Risk-prone patients were more likely to have CABG surgery in unadjusted (Odds Ratio [OR] = 1.21; 95% CI 1.08–1.36) and adjusted (OR = 1.18; 95% CI 1.02–1.36) models, but were no more likely to have PCI or any revascularization. Having risk-prone attitudes was associated with better survival in an unadjusted survival analysis (Hazard Ratio [HR] = 0.78 (95% CI 0.66–0.93), but not in a risk-adjusted analysis (HR = 0.92, 95% CI 0.77–1.10).</p> <p>Conclusion</p> <p>These exploratory findings suggest that patient attitudes toward risk taking may <b>contribute to </b>some of the documented differences in use of invasive cardiac procedures. An awareness of these associations could help healthcare providers as they counsel patients regarding cardiac care decisions.</p
The Promise of Prevention: The Effects of Four Preventable Risk Factors on National Life Expectancy and Life Expectancy Disparities by Race and County in the United States
Majid Ezzati and colleagues examine the contribution of a set of risk factors (smoking, high blood pressure, elevated blood glucose, and adiposity) to socioeconomic disparities in life expectancy in the US population
Proteolytic Activities of Oral Bacteria on ProMMP-9 and the Effect of Synthetic Proteinase Inhibitors
Tissue reactions to bacteria lead to proinflammatory reactions involving matrix metalloproteinases (MMPs). Synthetic protease inhibitors may offer new possibilities to regulate bacterial proteases. We investigated proteolytic activities of certain periodontal bacteria, their effects on the latent proMMP-9, and the effects of synthetic MMP inhibitors and a serine protease inhibitor Pefabloc. The strains studied were Porphyromonas gingivalis, Prevotella intermedia, Peptostreptoccus micros, Prevotella nigrescens, Fusobacterium nucleatum, and 5 Aggregatibacter actinomycetemcomitans serotypes. Their gelatinolytic activities and the effects of certain synthetic MMP inhibitors and Pefabloc were analyzed by zymography. Bacterial effects on proMMP-9 conversion were investigated by Western immunoblot. All investigated periodontal bacteria produced gelatinolytic cell-bound and extracellular proteinases which could fragment latent proMMP-9, suggesting co-operative processing cascades in oral tissue remodeling. A. actinomycetemcomitans produced the weakest gelatinolytic activity. Synthetic proteinase inhibitors exhibited slight but clear reductive effects on the bacterial proteolytic activities. We conclude that targeted anti-proteolytic treatment modalities against bacterial-host proteolytic cascades can be developed
Multi-messenger observations of a binary neutron star merger
On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta
Recommended from our members
Prospects for Observing and Localizing Gravitational-Wave Transients with Advanced LIGO and Advanced Virgo.
We present a possible observing scenario for the Advanced LIGO and Advanced Virgo gravitational-wave detectors over the next decade, with the intention of providing information to the astronomy community to facilitate planning for multi-messenger astronomy with gravitational waves. We determine the expected sensitivity of the network to transient gravitational-wave signals, and study the capability of the network to determine the sky location of the source. We report our findings for gravitational-wave transients, with particular focus on gravitational-wave signals from the inspiral of binary neutron-star systems, which are considered the most promising for multi-messenger astronomy. The ability to localize the sources of the detected signals depends on the geographical distribution of the detectors and their relative sensitivity, and 90% credible regions can be as large as thousands of square degrees when only two sensitive detectors are operational. Determining the sky position of a significant fraction of detected signals to areas of 5 deg2 to 20 deg2 will require at least three detectors of sensitivity within a factor of ∼ 2 of each other and with a broad frequency bandwidth. Should the third LIGO detector be relocated to India as expected, a significant fraction of gravitational-wave signals will be localized to a few square degrees by gravitational-wave observations alone
Observation of Gravitational Waves from a Binary Black Hole Merger
On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave
Observatory simultaneously observed a transient gravitational-wave signal. The signal sweeps upwards in
frequency from 35 to 250 Hz with a peak gravitational-wave strain of 1.0 × 10−21. It matches the waveform
predicted by general relativity for the inspiral and merger of a pair of black holes and the ringdown of the
resulting single black hole. The signal was observed with a matched-filter signal-to-noise ratio of 24 and a
false alarm rate estimated to be less than 1 event per 203 000 years, equivalent to a significance greater
than 5.1σ. The source lies at a luminosity distance of 410þ160
−180 Mpc corresponding to a redshift z ¼ 0.09þ0.03 −0.04 .
In the source frame, the initial black hole masses are 36þ5
−4M⊙ and 29þ4
−4M⊙, and the final black hole mass is
62þ4
−4M⊙, with 3.0þ0.5 −0.5M⊙c2 radiated in gravitational waves. All uncertainties define 90% credible intervals.
These observations demonstrate the existence of binary stellar-mass black hole systems. This is the first direct
detection of gravitational waves and the first observation of a binary black hole merger
Localization and broadband follow-up of the gravitational-wave transient GW150914
A gravitational-wave transient was identified in data recorded by the Advanced LIGO detectors on 2015 September 14. The event candidate, initially designated G184098 and later given the name GW150914, is described in detail elsewhere. By prior arrangement, preliminary estimates of the time, significance, and sky location of the event were shared with 63 teams of observers covering radio, optical, near-infrared, X-ray, and gamma-ray wavelengths with ground- and space-based facilities. In this Letter we describe the low-latency analysis of the gravitational wave data and present the sky localization of the first observed compact binary merger. We summarize the follow-up observations reported by 25 teams via private Gamma-ray Coordinates Network Circulars, giving an overview of the participating facilities, the gravitational wave sky localization coverage, the timeline and depth of the observations. As this event turned out to be a binary black hole merger, there is little expectation of a detectable electromagnetic signature. Nevertheless, this first broadband campaign to search for a counterpart of an Advanced LIGO source represents a milestone and highlights the broad capabilities of the transient astronomy community and the observing strategies that have been developed to pursue neutron star binary merger events. Detailed investigations of the electromagnetic data and results of the electromagnetic follow-up campaign will be disseminated in the papers of the individual teams
- …