746 research outputs found
Are Shakespeare's plays always metatheatrical?
The ambiguity of the term "metatheatre" derives in part from its text of origin, Lionel Abel's 1963 book of the same name. By his own admission, Abel's use of the term was "loose and sometimes erratic" (v). If we use the term in its broadest sense—to describe any theater that in some way draws attention to its own artifice—it becomes evident that early modern drama is always "metatheatrical" to some extent: these plays are designed never entirely to lose sight of the material realities of their performance, or of the physical co-presence of their audiences. If this is the case, how useful is the term "metatheatre"? Indeed, are Shakespeare's plays always metatheatrical? This article unpicks some of the conflicting notions of metatheatre suggested in Abel's book, and suggests a modified conceptual model based on the work of Arthur Koestler. Arguing against the tendency to see early modern theatrical self-consciousness as a form of proto-Brechtian alienation, it uses Koestler's concept of bisociation to think about the delight produced by "universes of discourse colliding, frames getting entangled, or contexts getting confused" (40). It considers several examples from performance, especially moments from productions at the reconstructed Shakespeare's Globe, to argue that metatheatre functions as a kind of imaginative game. This game may be prompted by cues in the written text, but it is one that can be played only in performance. While Harry Newman's essay for this special issue argues that metatheatricality was available to early modern readers "on the paper stage of printed playbooks" (104), my essay posits a decidedly more theatrical definition of the term, contending that the agency of the actors plays a central role in determining the metatheatricality of particular moments on stage
Improving Strategies via SMT Solving
We consider the problem of computing numerical invariants of programs by
abstract interpretation. Our method eschews two traditional sources of
imprecision: (i) the use of widening operators for enforcing convergence within
a finite number of iterations (ii) the use of merge operations (often, convex
hulls) at the merge points of the control flow graph. It instead computes the
least inductive invariant expressible in the domain at a restricted set of
program points, and analyzes the rest of the code en bloc. We emphasize that we
compute this inductive invariant precisely. For that we extend the strategy
improvement algorithm of [Gawlitza and Seidl, 2007]. If we applied their method
directly, we would have to solve an exponentially sized system of abstract
semantic equations, resulting in memory exhaustion. Instead, we keep the system
implicit and discover strategy improvements using SAT modulo real linear
arithmetic (SMT). For evaluating strategies we use linear programming. Our
algorithm has low polynomial space complexity and performs for contrived
examples in the worst case exponentially many strategy improvement steps; this
is unsurprising, since we show that the associated abstract reachability
problem is Pi-p-2-complete
The level set method for the two-sided eigenproblem
We consider the max-plus analogue of the eigenproblem for matrix pencils
Ax=lambda Bx. We show that the spectrum of (A,B) (i.e., the set of possible
values of lambda), which is a finite union of intervals, can be computed in
pseudo-polynomial number of operations, by a (pseudo-polynomial) number of
calls to an oracle that computes the value of a mean payoff game. The proof
relies on the introduction of a spectral function, which we interpret in terms
of the least Chebyshev distance between Ax and lambda Bx. The spectrum is
obtained as the zero level set of this function.Comment: 34 pages, 4 figures. Changes with respect to the previous version: we
explain relation to mean-payoff games and discrete event systems, and show
that the reconstruction of spectrum is pseudopolynomia
Using Strategy Improvement to Stay Alive
We design a novel algorithm for solving Mean-Payoff Games (MPGs). Besides
solving an MPG in the usual sense, our algorithm computes more information
about the game, information that is important with respect to applications. The
weights of the edges of an MPG can be thought of as a gained/consumed energy --
depending on the sign. For each vertex, our algorithm computes the minimum
amount of initial energy that is sufficient for player Max to ensure that in a
play starting from the vertex, the energy level never goes below zero. Our
algorithm is not the first algorithm that computes the minimum sufficient
initial energies, but according to our experimental study it is the fastest
algorithm that computes them. The reason is that it utilizes the strategy
improvement technique which is very efficient in practice
The nuclear energy density functional formalism
The present document focuses on the theoretical foundations of the nuclear
energy density functional (EDF) method. As such, it does not aim at reviewing
the status of the field, at covering all possible ramifications of the approach
or at presenting recent achievements and applications. The objective is to
provide a modern account of the nuclear EDF formalism that is at variance with
traditional presentations that rely, at one point or another, on a {\it
Hamiltonian-based} picture. The latter is not general enough to encompass what
the nuclear EDF method represents as of today. Specifically, the traditional
Hamiltonian-based picture does not allow one to grasp the difficulties
associated with the fact that currently available parametrizations of the
energy kernel at play in the method do not derive from a genuine
Hamilton operator, would the latter be effective. The method is formulated from
the outset through the most general multi-reference, i.e. beyond mean-field,
implementation such that the single-reference, i.e. "mean-field", derives as a
particular case. As such, a key point of the presentation provided here is to
demonstrate that the multi-reference EDF method can indeed be formulated in a
{\it mathematically} meaningful fashion even if does {\it not} derive
from a genuine Hamilton operator. In particular, the restoration of symmetries
can be entirely formulated without making {\it any} reference to a projected
state, i.e. within a genuine EDF framework. However, and as is illustrated in
the present document, a mathematically meaningful formulation does not
guarantee that the formalism is sound from a {\it physical} standpoint. The
price at which the latter can be enforced as well in the future is eventually
alluded to.Comment: 64 pages, 8 figures, submitted to Euroschool Lecture Notes in Physics
Vol.IV, Christoph Scheidenberger and Marek Pfutzner editor
Colloquium: Mechanical formalisms for tissue dynamics
The understanding of morphogenesis in living organisms has been renewed by
tremendous progressin experimental techniques that provide access to
cell-scale, quantitative information both on theshapes of cells within tissues
and on the genes being expressed. This information suggests that
ourunderstanding of the respective contributions of gene expression and
mechanics, and of their crucialentanglement, will soon leap forward.
Biomechanics increasingly benefits from models, which assistthe design and
interpretation of experiments, point out the main ingredients and assumptions,
andultimately lead to predictions. The newly accessible local information thus
calls for a reflectionon how to select suitable classes of mechanical models.
We review both mechanical ingredientssuggested by the current knowledge of
tissue behaviour, and modelling methods that can helpgenerate a rheological
diagram or a constitutive equation. We distinguish cell scale ("intra-cell")and
tissue scale ("inter-cell") contributions. We recall the mathematical framework
developpedfor continuum materials and explain how to transform a constitutive
equation into a set of partialdifferential equations amenable to numerical
resolution. We show that when plastic behaviour isrelevant, the dissipation
function formalism appears appropriate to generate constitutive equations;its
variational nature facilitates numerical implementation, and we discuss
adaptations needed in thecase of large deformations. The present article
gathers theoretical methods that can readily enhancethe significance of the
data to be extracted from recent or future high throughput
biomechanicalexperiments.Comment: 33 pages, 20 figures. This version (26 Sept. 2015) contains a few
corrections to the published version, all in Appendix D.2 devoted to large
deformation
Safety and immunogenicity of a chimpanzee adenovirus-vectored Ebola vaccine in healthy adults: a randomised, double-blind, placebo-controlled, dose-finding, phase 1/2a study.
BACKGROUND: The ongoing Ebola outbreak led to accelerated efforts to test vaccine candidates. On the basis of a request by WHO, we aimed to assess the safety and immunogenicity of the monovalent, recombinant, chimpanzee adenovirus type-3 vector-based Ebola Zaire vaccine (ChAd3-EBO-Z).
METHODS: We did this randomised, double-blind, placebo-controlled, dose-finding, phase 1/2a trial at the Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland. Participants (aged 18-65 years) were randomly assigned (2:2:1), via two computer-generated randomisation lists for individuals potentially deployed in endemic areas and those not deployed, to receive a single intramuscular dose of high-dose vaccine (5 × 10(10) viral particles), low-dose vaccine (2·5 × 10(10) viral particles), or placebo. Deployed participants were allocated to only the vaccine groups. Group allocation was concealed from non-deployed participants, investigators, and outcome assessors. The safety evaluation was not masked for potentially deployed participants, who were therefore not included in the safety analysis for comparison between the vaccine doses and placebo, but were pooled with the non-deployed group to compare immunogenicity. The main objectives were safety and immunogenicity of ChAd3-EBO-Z. We did analysis by intention to treat. This trial is registered with ClinicalTrials.gov, number NCT02289027.
FINDINGS: Between Oct 24, 2014, and June 22, 2015, we randomly assigned 120 participants, of whom 18 (15%) were potentially deployed and 102 (85%) were non-deployed, to receive high-dose vaccine (n=49), low-dose vaccine (n=51), or placebo (n=20). Participants were followed up for 6 months. No vaccine-related serious adverse events were reported. We recorded local adverse events in 30 (75%) of 40 participants in the high-dose group, 33 (79%) of 42 participants in the low-dose group, and five (25%) of 20 participants in the placebo group. Fatigue or malaise was the most common systemic adverse event, reported in 25 (62%) participants in the high-dose group, 25 (60%) participants in the low-dose group, and five (25%) participants in the placebo group, followed by headache, reported in 23 (57%), 25 (60%), and three (15%) participants, respectively. Fever occurred 24 h after injection in 12 (30%) participants in the high-dose group and 11 (26%) participants in the low-dose group versus one (5%) participant in the placebo group. Geometric mean concentrations of IgG antibodies against Ebola glycoprotein peaked on day 28 at 51 μg/mL (95% CI 41·1-63·3) in the high-dose group, 44·9 μg/mL (25·8-56·3) in the low-dose group, and 5·2 μg/mL (3·5-7·6) in the placebo group, with respective response rates of 96% (95% CI 85·7-99·5), 96% (86·5-99·5), and 5% (0·1-24·9). Geometric mean concentrations decreased by day 180 to 25·5 μg/mL (95% CI 20·6-31·5) in the high-dose group, 22·1 μg/mL (19·3-28·6) in the low-dose group, and 3·2 μg/mL (2·4-4·9) in the placebo group. 28 (57%) participants given high-dose vaccine and 31 (61%) participants given low-dose vaccine developed glycoprotein-specific CD4 cell responses, and 33 (67%) and 35 (69%), respectively, developed CD8 responses.
INTERPRETATION: ChAd3-EBO-Z was safe and well tolerated, although mild to moderate systemic adverse events were common. A single dose was immunogenic in almost all vaccine recipients. Antibody responses were still significantly present at 6 months. There was no significant difference between doses for safety and immunogenicity outcomes. This acceptable safety profile provides a reliable basis to proceed with phase 2 and phase 3 efficacy trials in Africa.
FUNDING: Swiss State Secretariat for Education, Research and Innovation (SERI), through the EU Horizon 2020 Research and Innovation Programme
Traitements néoadjuvants dans les cancers du sein. La TEP FDG pour évaluer la réponse précoce et prédire la réponse histologique complète
2017 HRS/EHRA/ECAS/APHRS/SOLAECE expert consensus statement on catheter and surgical ablation of atrial fibrillation: executive summary.
S
2017 HRS/EHRA/ECAS/APHRS/SOLAECE expert consensus statement on catheter and surgical ablation of atrial fibrillation: executive summary.
S
- …
