37 research outputs found

    Post-COVID-19 Invasive Fungal Sinusitis: A Case Series from Southern India

    Get PDF
    Acute Invasive Fungal Rhinosinusitis (AIFR) is a serious condition with aggressive course and high mortality rates. There is an upsurge in the incidence of invasive fungal rhinosinusitis in post COVID-19 patients. We have come across 20 AIFR cases in post COVID-19 patients. On retrospective exploration of the patient’s records, we found that 30% patients had received steroids and 90% had diabetes. All the patients were managed by administration of IV amphotericin B and local debridement of infected tissues. The mortality rate was as low as 15 %. We conclude that combined approach of Antifungal therapy with debridement of infected tissues improves the prognosis and survival of AIFR patients

    Analysis of various transport modes to evaluate personal exposure to PM2.5 pollution in Delhi

    Get PDF
    Access to detailed comparisons of the air quality variations encountered when commuting through a city offers the urban traveller more informed choice on how to minimise personal exposure to inhalable pollutants. In this study we report on an experiment designed to compare atmospheric contaminants, in this case, PM2.5 inhaled during rickshaw, bus, metro, non-air-conditioned car, air-conditioned (AC) car and walking journeys through the city of Delhi, India. The data collection was carried out using a portable TSI SidePak Aerosol Monitor AM520, during February 2018. The results demonstrate that rickshaws (266 ± 159 μg/m3) and walking (259 ± 102 μg/m3) modes were exposed to significantly higher mean PM2.5 levels, whereas AC cars (89 ± 30 μg/m3) and the metro (72 ± 11 μg/m3) had the lowest overall exposure rates. Buses (113 ± 14 μg/m3) and non-AC cars (149 ± 13 μg/m3) had average levels of exposure, but open windows and local factors caused surges in PM2.5 for both transport modes. Closed air-conditioned transport modes were shown to be the best modes for avoiding high concentrations of PM2.5, however other factors (e.g. time of the day, window open or closed in the vehicles) affected exposure levels significantly. Overall, the highest total respiratory deposition doses (RDDs) values were estimated as 84.7 ± 33.4 μg/km, 15.8 ± 9.5 μg/km and 9.7 ± 0.9 μg/km for walking, rickshaw and non-AC car transported mode of journey, respectively. Unless strong pollution control measures are taken, the high exposure to PM2.5 levels will continue causing serious short-term and long-term health concerns for the Delhi residents. Implementing integrated and intelligent transport systems and educating commuters on ways to reduce exposure levels and impacts on commuter's health are required

    Generation of Bianchi type V cosmological models with varying Λ\Lambda-term

    Full text link
    Bianchi type V perfect fluid cosmological models are investigated with cosmological term Λ\Lambda varying with time. Using a generation technique (Camci {\it et al.}, 2001), it is shown that the Einstein's field equations are solvable for any arbitrary cosmic scale function. Solutions for particular forms of cosmic scale functions are also obtained. The cosmological constant is found to be decreasing function of time, which is supported by results from recent type Ia supernovae observations. Some physical aspects of the models are also discussed.Comment: 16 pages, 3 figures, submitted to CJ

    Bianchi Type III Anisotropic Dark Energy Models with Constant Deceleration Parameter

    Full text link
    The Bianchi type III dark energy models with constant deceleration parameter are investigated. The equation of state parameter ω\omega is found to be time dependent and its existing range for this model is consistent with the recent observations of SN Ia data, SN Ia data (with CMBR anisotropy) and galaxy clustering statistics. The physical aspect of the dark energy models are discussed.Comment: 12 pages, 2 figures, Accepted version of IJT

    The burden of unintentional drowning: Global, regional and national estimates of mortality from the Global Burden of Disease 2017 Study

    Get PDF
    __Background:__ Drowning is a leading cause of injury-related mortality globally. Unintentional drowning (International Classification of Diseases (ICD) 10 codes W65-74 and ICD9 E910) is one of the 30 mutually exclusive and collectively exhaustive causes of injury-related mortality in the Global Burden of Disease (GBD) study. This study's objective is to describe unintentional drowning using GBD estimates from 1990 to 2017. __Methods:__ Unintentional drowning from GBD 2017 was estimated for cause-specific mortality and years of life lost (YLLs), age, sex, country, region, Socio-demographic Index (SDI) quintile, and trends from 1990 to 2017. GBD 2017 used standard GBD methods for estimating mortality from drowning. __Results:__ Globally, unintentional drowning mortality decreased by 44.5% between 1990 and 2017, from 531 956 (uncertainty interval (UI): 484 107 to 572 854) to 295 210 (284 493 to 306 187) deaths. Global age-standardised mortality rates decreased 57.4%, from 9.3 (8.5 to 10.0) in 1990 to 4.0 (3.8 to 4.1) per 100 000 per annum in 2017. Unintentional drowning-associated mortality was generally higher in children, males and in low-SDI to middle-SDI countries. China, India, Pakistan and Bangladesh accounted for 51.2% of all drowning deaths in 2017. Oceania was the region with the highest rate of age-standardised YLLs in 2017, with 45 434 (40 850 to 50 539) YLLs per 100 000 across both sexes. __Conclusions:__ There has been a decline in global drowning rates. This study shows that the decline was not consistent across countries. The results reinforce the need for continued and improved policy, prevention and research efforts, with a focus on low-and middle-income countries

    Future and potential spending on health 2015-40: Development assistance for health, and government, prepaid private, and out-of-pocket health spending in 184 countries

    Get PDF
    Background: The amount of resources, particularly prepaid resources, available for health can affect access to health care and health outcomes. Although health spending tends to increase with economic development, tremendous variation exists among health financing systems. Estimates of future spending can be beneficial for policy makers and planners, and can identify financing gaps. In this study, we estimate future gross domestic product (GDP), all-sector government spending, and health spending disaggregated by source, and we compare expected future spending to potential future spending. Methods: We extracted GDP, government spending in 184 countries from 1980-2015, and health spend data from 1995-2014. We used a series of ensemble models to estimate future GDP, all-sector government spending, development assistance for health, and government, out-of-pocket, and prepaid private health spending through 2040. We used frontier analyses to identify patterns exhibited by the countries that dedicate the most funding to health, and used these frontiers to estimate potential health spending for each low-income or middle-income country. All estimates are inflation and purchasing power adjusted. Findings: We estimated that global spending on health will increase from US9.21trillionin2014to9.21 trillion in 2014 to 24.24 trillion (uncertainty interval [UI] 20.47-29.72) in 2040. We expect per capita health spending to increase fastest in upper-middle-income countries, at 5.3% (UI 4.1-6.8) per year. This growth is driven by continued growth in GDP, government spending, and government health spending. Lower-middle income countries are expected to grow at 4.2% (3.8-4.9). High-income countries are expected to grow at 2.1% (UI 1.8-2.4) and low-income countries are expected to grow at 1.8% (1.0-2.8). Despite this growth, health spending per capita in low-income countries is expected to remain low, at 154(UI133181)percapitain2030and154 (UI 133-181) per capita in 2030 and 195 (157-258) per capita in 2040. Increases in national health spending to reach the level of the countries who spend the most on health, relative to their level of economic development, would mean $321 (157-258) per capita was available for health in 2040 in low-income countries. Interpretation: Health spending is associated with economic development but past trends and relationships suggest that spending will remain variable, and low in some low-resource settings. Policy change could lead to increased health spending, although for the poorest countries external support might remain essential

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    Get PDF
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research.Peer reviewe

    Comprehensive analysis of design software application in solar distillation units

    No full text
    The use of solar stills in rural regions are becoming increasingly popular as it is an economical solution for drinking water from saline water sources. Many researchers have worked for the improvement of conventional solar still to enhance productivity. Costly and time-consuming processes of operation in solar stills encourage many scholars to analyze mathematical simulation. This paper presents comprehensive reviews of the application of different design software to solar still systems. Design software is essential for developing and analyzing the mathematical models and predicting the most suitable performance parameters for the enhanced production rate of distilled water for still systems. Numerical modeling of solar still systems is necessary to analyze and investigate air movement, temperature variation for knowing water temperature, and air temperature through software like CFD, MATLAB, FORTRAN, TRYNSYS AutoCAD. The simulation technique's application using CFD is made with TRNSYS, FLUENT, ANSYS, FORTRAN and MATLAB which are useful tools to develop such mathematical models for the prediction of flow parameters. Engineering Equation Solver (EES) package and COMSOL Multiphysics solve the differential energy balance equation. All newly developed software employed for the utility of still solar systems is discussed. This article provides a comprehensive overview of the various software tools used in solar still to help researchers, scientists, and academicians

    Dynamic analysis of daylight factor, thermal comfort and energy performance under clear sky conditions for building: An experimental validation

    No full text
    This work focuses on daylighting performance analysis and its energy savings potential for residential building by using dynamic simulation and its experimental validation. The thermal performance of nano building material and its comparison with conventional building material has also been analyzed. The daylight factor was found in between 1 and 11% and 1–21% for the floor and wall, which is within the thermal comfort limit. The theoretical model results are compared with experimental values. The best building orientation was found to be 180° from the north or towards the south. Wind speed was found to be more than 30 kmph, which is used effectively in the natural ventilation of the building envelop. It leads to optimization of the room temperature. The heat transfer parameters, including the quantity of heat lost and gained through fabrics, thermal properties of nanomaterial have been compared with conventional building materials. The U value (heat loss coefficient) of building material defines building performance at a particular orientation. The U- values decreased to 8 times in-wall and 8.67 times in the roof of the building envelope compared to conventional building material. The model was experimentally validated, and there is close agreement between simulated and experimental daylight factor values with root mean percentage error of 1.24%. The total uncertainty in experimental measurement was found out to be 0.1421%, which is within the expectable range. Present study can be implemented in any building design with minimum modifications in any part of the world

    Characteristics of tail pipe (Nitric oxide) and resuspended dust emissions from urban roads – A case study in Delhi city

    Get PDF
    Introduction: Personal exposure to elevated vehicle exhaust and non-exhaust emissions at urban roadside leads to carcinogenic health effects, respiratory illness and nervous system disorders. In this paper, an attempt has been made to investigate the exhaust and non-exhaust emissions emitted from selected roads in Delhi city. Methods: Based on the vehicular density per hour and speed, three categories of roads have been considered in the present study: (a) low density road (≤1000 vehicles/hour, V ≥ 10 m/s); (b) medium density road (>1000 vehicles/hour but ≤ 2000 vehicles/hour, V ≥ 7.5 m/s 2000 vehicles/hour, V < 7.5 m/s). At the selected roads, real-world exhaust emissions were measured using AVL DiTEST 1000 analyser. The silt load measurements were also carried out as per EPA AP-42 methodology at the selected roads. Results: Results indicated real-world NO exhaust emissions of 0.5 g/m3 (2.03 g/km) on high-density roads and 0.23 g/m3 (0.67 g/km) on low and medium density roads. These values were significantly higher than the Bharat Standard (BS) IV (0.25 g/km). The silt load on the different types of roads indicated 3, 25 and 44 g/m2 -day dust deposition on, low, medium and high-density road, respectively. PM2.5 and PM10 emission rates were measured using US-EPA AP-42 methodology and were found to be least at low-density roads with values of 0.54 and 2.22 g/VKT (VKT -Vehicle Kilometer Travelled) respectively, and highest for high density roads with values of 12.40 and 51.25 g/VKT respectively. Conclusion: The present study reveals that both tailpipe (exhaust) and resuspend able road dust (non-exhaust) emissions contributes significantly and deteriorates local air quality. Although there exists emission standards, but there are no enforced regulations for non-exhaust emissions (resuspension of road dust). Hence, there is need to regulate non-exhaust emissions on urban roads
    corecore