37 research outputs found

    The Power of the Web in Cancer Drug Discovery and Clinical Trial Design: Research without a Laboratory?

    Get PDF
    The discovery of effective cancer treatments is a key goal for pharmaceutical companies. However, the current costs of bringing a cancer drug to the market in the USA is now estimated at $1 billion per FDA approved drug, with many months of research at the bench and costly clinical trials. A growing number of papers highlight the use of data mining tools to determine associations between drugs, genes or protein targets, and possible mechanism of actions or therapeutic efficacy which could be harnessed to provide information that can refine or direct new clinical cancer studies and lower costs. This report reviews the paper by R.J. Epstein, which illustrates the potential of text mining using Boolean parameters in cancer drug discovery, and other studies which use alternative data mining approaches to aid cancer research

    Synergistic activity of agents targeting growth factor receptors, CDKs and downstream signaling molecules in a panel of pancreatic cancer cell lines and the identification of antagonistic combinations : implications for future clinical trials in pancreatic cancer

    Get PDF
    Pancreatic cancer is one of the most aggressive, heterogeneous and fatal type of human cancers for which more effective therapeutic agents are urgently needed. Here, we investigated the sensitivity of a panel of seven human pancreatic cancer cell lines (HPCCLs) to treatment with various tyrosine kinase inhibitors (TKIs), cyclin‑dependent kinase (CDK) inhibitors, an inhibitor of STAT3 stattic, and a cytotoxic agent gemcitabine both as single agents and in combination. The membranous expression of various receptors and the effect of selected agents on cell cycle distribution, cell signaling pathways and migration was determined using flow cytometry, western blot analysis and scratch wound healing assays, respectively. While the expression of both HER‑3 and HER‑4 was low or negative, the expression of EGFR and HER2 was high or intermediate in all HPCCLs. Of all the agents examined, the CDK1/2/5/9 inhibitor, dinacicilib, was the most potent agent which inhibited the proliferation of all seven HPCCLs with IC50 values of ≤10 nM, followed by SRC targeting TKI dasatinib (IC50 of ≤258 nM), gemcitabine (IC50 of ≤330 nM), stattic (IC50 of ≤2 µM) and the irreversible pan‑HER TKI afatinib (IC50 of ≤2.95 µM). Treatment with afatinib and dasatinib inhibited the ligand‑induced phosphorylation of EGFR and SRC respectively. Statistically significant associations were found between HER2 expression and response to treatment with the ALK/IGF‑IR/InsR inhibitor ceritinib and fibroblast growth factor receptor (FGFR)1/2/3 inhibitor AZD4547, HER3 and IGF‑IR expression and their response to treatment with TKIs targeting HER family members (erlotinib and afatinib), and c‑MET and ALK7 expression and their response to treatment with stattic. Interestingly, treatment with a combination of afatinib with dasatinib and gemcitabine with dasatinib resulted in synergistic tumor growth inhibition in all HPCCLs examined. In contrast, the combination of afatinib with dinaciclib was found to be antagonistic. Finally, the treatment with afatinib, dasatinib and dinaciclib strongly inhibited the migration of all HPCCLs examined. In conclusion, the CDK1/2/5/9 inhibitor dinaciclib, irreversible pan‑HER TKI afatinib and SRC targeting TKI dasatinib were most effective at inhibiting the proliferation and migration of HPCCLs and the combination of afatinib with dasatinib and gemcitabine with dasatinib led to synergistic tumor growth inhibition in all HPCCLs examined. Our results support further investigation on the therapeutic potential of these combinations in future clinical trials in pancreatic cancer

    Human peritoneal mesothelial cells display phagocytic and antigen-presenting functions to contribute to intraperitoneal immunity

    Get PDF
    Mesothelial cells lining the peritoneal cavity are strategically positioned to respond to and counter intraperitoneal infections, cancer cells, and other challenges. We have investigated human peritoneal mesothelial cells (HPMCs) for phagocytic activity, expression of surface MHC Class II and accessory molecules involved in antigen presentation, and the ability to present recall antigens to T cells. Phagocytosis of dextran, latex beads and Escherichia coli was observed by flow cytometry, and internalization was visualised using confocal and electron microscopy. Flow cytometry and/or cellular ELISA showed constitutive expression of ICAM-I, LFA-3, and B7-1, but not B7-2 or MHC II. Interferon-gamma induced MHC II and ICAM-1 expression in a dose- and time-dependent manner. Importantly, HPMCs induced autologous CD3+ T lymphocyte proliferation (3H-incorporation) after pulse with recall antigen. HPMCs equipped with phagocytic and antigen-presenting machinery are anticipated to have an integral role in intraperitoneal immune surveillance

    Anticancer effects of phytocannabinoids used with chemotherapy in leukaemia cells can be improved by altering the sequence of their administration

    Get PDF
    Phytocannabinoids possess anticancer activity when used alone, and a number have also been shown to combine favourably with each other in vitro in leukaemia cells to generate improved activity. We have investigated the effect of pairing cannabinoids and assessed their anticancer activity in cell line models. Those most effective were then used with the common anti-leukaemia drugs cytarabine and vincristine, and the effects of this combination therapy on cell death studied in vitro. Results show a number of cannabinoids could be paired together to generate an effect superior to that achieved if the components were used individually. For example, in HL60 cells, the IC50 values at 48 h for cannabidiol (CBD) and tetrahydrocannabinol (THC) when used alone were 8 and 13 µM, respectively; however, if used together, it was 4 µM. Median-effect analysis confirmed the benefit of using cannabinoids in pairs, with calculated combination indices being <1 in a number of cases. The most efficacious cannabinoid-pairs subsequently synergised further when combined with the chemotherapy agents, and were also able to sensitise leukaemia cells to their cytotoxic effects. The sequence of administration of these drugs was important though; using cannabinoids after chemotherapy resulted in greater induction of apoptosis, whilst this was the opposite when the schedule of administration was reversed. Our results suggest that when certain cannabinoids are paired together, the resulting product can be combined synergistically with common anti-leukaemia drugs allowing the dose of the cytotoxic agents to be dramatically reduced yet still remain efficacious. Nevertheless, the sequence of drug administration is crucial to the success of these triple combinations and should be considered when planning such treatments

    Randomised, open-label, phase II study of Gemcitabine with and without IMM-101 for advanced pancreatic cancer

    Get PDF
    Background: Immune Modulation and Gemcitabine Evaluation-1, a randomised, open-label, phase II, first-line, proof of concept study (NCT01303172), explored safety and tolerability of IMM-101 (heat-killed Mycobacterium obuense; NCTC 13365) with gemcitabine (GEM) in advanced pancreatic ductal adenocarcinoma. Methods: Patients were randomised (2 : 1) to IMM-101 (10 mg ml−l intradermally)+GEM (1000 mg m−2 intravenously; n=75), or GEM alone (n=35). Safety was assessed on frequency and incidence of adverse events (AEs). Overall survival (OS), progression-free survival (PFS) and overall response rate (ORR) were collected. Results: IMM-101 was well tolerated with a similar rate of AE and serious adverse event reporting in both groups after allowance for exposure. Median OS in the intent-to-treat population was 6.7 months for IMM-101+GEM v 5.6 months for GEM; while not significant, the hazard ratio (HR) numerically favoured IMM-101+GEM (HR, 0.68 (95% CI, 0.44–1.04, P=0.074). In a pre-defined metastatic subgroup (84%), OS was significantly improved from 4.4 to 7.0 months in favour of IMM-101+GEM (HR, 0.54, 95% CI 0.33–0.87, P=0.01). Conclusions: IMM-101 with GEM was as safe and well tolerated as GEM alone, and there was a suggestion of a beneficial effect on survival in patients with metastatic disease. This warrants further evaluation in an adequately powered confirmatory study

    Zoledronic acid renders human M1 and M2 macrophages susceptible to Vδ2(+) γδ T cell cytotoxicity in a perforin-dependent manner.

    Get PDF
    Vδ2(+) T cells are a subpopulation of γδ T cells in humans that are cytotoxic towards cells which accumulate isopentenyl pyrophosphate. The nitrogen-containing bisphosphonate, zoledronic acid (ZA), can induce tumour cell lines to accumulate isopentenyl pyrophosphate, thus rendering them more susceptible to Vδ2(+) T cell cytotoxicity. However, little is known about whether ZA renders other, non-malignant cell types susceptible. In this study we focussed on macrophages (Mϕs), as these cells have been shown to take up ZA. We differentiated peripheral blood monocytes from healthy donors into Mϕs and then treated them with IFN-γ or IL-4 to generate M1 and M2 Mϕs, respectively. We characterised these Mϕs based on their phenotype and cytokine production and then tested whether ZA rendered them susceptible to Vδ2(+) T cell cytotoxicity. Consistent with the literature, IFN-γ-treated Mϕs expressed higher levels of the M1 markers CD64 and IL-12p70, whereas IL-4-treated Mϕs expressed higher levels of the M2 markers CD206 and chemokine (C-C motif) ligand 18. When treated with ZA, both M1 and M2 Mϕs became susceptible to Vδ2(+) T cell cytotoxicity. Vδ2(+) T cells expressed perforin and degranulated in response to ZA-treated Mϕs as shown by mobilisation of CD107a and CD107b to the cell surface. Furthermore, cytotoxicity towards ZA-treated Mϕs was sensitive-at least in part-to the perforin inhibitor concanamycin A. These findings suggest that ZA can render M1 and M2 Mϕs susceptible to Vδ2(+) T cell cytotoxicity in a perforin-dependent manner, which has important implications regarding the use of ZA in cancer immunotherapy

    Mycobacteria activate γδ T-cell anti-tumour responses via cytokines from type 1 myeloid dendritic cells: a mechanism of action for cancer immunotherapy

    Get PDF
    Attenuated and heat-killed mycobacteria display demonstrable activity against cancer in the clinic; however, the induced immune response is poorly characterised and potential biomarkers of response ill-defined. We investigated whether three mycobacterial preparations currently used in the clinic (BCG and heat-killed Mycobacterium vaccae and Mycobacterium obuense) can stimulate anti-tumour effector responses in human γδ T-cells. γδ T-cell responses were characterised by measuring cytokine production, expression of granzyme B and cytotoxicity against tumour target cells. Results show that γδ T-cells are activated by these mycobacterial preparations, as indicated by upregulation of activation marker expression and proliferation. Activated γδ T-cells display enhanced effector responses, as shown by upregulated granzyme B expression, production of the TH1 cytokines IFN-γ and TNF-α, and enhanced degranulation in response to susceptible and zoledronic acid-treated resistant tumour cells. Moreover, γδ T-cell activation is induced by IL-12, IL-1β and TNF-α from circulating type 1 myeloid dendritic cells (DCs), but not from type 2 myeloid DCs or plasmacytoid DCs. Taken together, we show that BCG, M. vaccae and M. obuense induce γδ T-cell anti-tumour effector responses indirectly via a specific subset of circulating DCs and suggest a mechanism for the potential immunotherapeutic effects of BCG, M. vaccae and M. obuense in cancer

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    Get PDF
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research.Peer reviewe

    Adjuvant bevacizumab for melanoma patients at high risk of recurrence: survival analysis of the AVAST-M trial

    Get PDF
    Background: Bevacizumab is a recombinant humanised monoclonal antibody to vascular endothelial growth factor shown to improve survival in advanced solid cancers. We evaluated the role of adjuvant bevacizumab in melanoma patients at high risk of recurrence. Patients and methods: Patients with resected AJCC stage IIB, IIC and III cutaneous melanoma were randomised to receive either adjuvant bevacizumab (7.5?mg/kg i.v. 3 weekly for 1?year) or standard observation. The primary end point was detection of an 8% difference in 5-year overall survival (OS) rate; secondary end points included disease-free interval (DFI) and distant metastasis-free interval (DMFI). Tumour and blood were analysed for prognostic and predictive markers. Results: Patients (n=1343) recruited between 2007 and 2012 were predominantly stage III (73%), with median age 56?years (range 18-88?years). With 6.4-year median follow-up, 515 (38%) patients had died [254 (38%) bevacizumab; 261 (39%) observation]; 707 (53%) patients had disease recurrence [336 (50%) bevacizumab, 371 (55%) observation]. OS at 5?years was 64% for both groups [hazard ratio (HR) 0.98; 95% confidence interval (CI) 0.82-1.16, P?=?0.78). At 5?years, 51% were disease free on bevacizumab versus 45% on observation (HR 0.85; 95% CI 0.74-0.99, P?=?0.03), 58% were distant metastasis free on bevacizumab versus 54% on observation (HR 0.91; 95% CI 0.78-1.07, P?=?0.25). Forty four percent of 682 melanomas assessed had a BRAFV600 mutation. In the observation arm, BRAF mutant patients had a trend towards poorer OS compared with BRAF wild-type patients (P?=?0.06). BRAF mutation positivity trended towards better OS with bevacizumab (P?=?0.21). Conclusions: Adjuvant bevacizumab after resection of high-risk melanoma improves DFI, but not OS. BRAF mutation status may predict for poorer OS untreated and potential benefit from bevacizumab. Clinical Trial Information: ISRCTN 81261306; EudraCT Number: 2006-005505-64

    31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two

    Get PDF
    Background The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd. Methods We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background. Results First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001). Conclusions In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival
    corecore