1,095 research outputs found

    Status and discovery prospects for light pseudoscalars in the NMSSM

    Get PDF
    While most BSM searches at the LHC focus on heavy new states, the NMSSM contains the possibility of new light states that have escaped detection due to their singlet nature. Here we focus on light pseudoscalars, investigating the parameter space impact of recent LHC searches for such light states stemming from the decay of the 125 GeV Higgs boson. It is shown that, though direct searches can not yet compete with the requirement of the 125 GeV scalar having SM-like couplings, the searches are touching the allowed parameter space and should make a phenomenological impact in the near future.Comment: To appear in the proceedings for EPS-HEP 201

    Cognitive facilitation following intentional odor exposure

    Get PDF
    This paper reviews evidence that, in addition to incidental olfactory pollutants, intentional odor delivery can impact cognitive operations both positively and negatively. Evidence for cognitive facilitation/interference is reviewed alongside four potential explanations for odor-induced effects. It is concluded that the pharmacological properties of odors can induce changes in cognition. However, these effects can be accentuated/attenuated by the shift in mood following odor exposure, expectancy of cognitive effects, and cues to behavior via the contextual association with the odor. It is proposed that greater consideration is required in the intentional utilization of odors within both industrial and private locations, since differential effects are observed for odors with positive hedonic qualities

    Forgetting across a hierarchy of episodic representations

    Get PDF
    Rich episodic experiences are represented in a hierarchical manner across a diverse network of brain regions, and as such, the way in which episodes are forgotten is likely to be similarly diverse. Using novel experimental approaches and statistical modelling, recent research has suggested that item-based representations, such as ones related to the colour and shape of an object, fragment over time, whereas higher-order event-based representations may be forgotten in a more ‘holistic’ uniform manner. We propose a framework that reconciles these findings, where complex episodes are represented in a hierarchical manner, from individual items, to small-scale events, to large-scale episodic narratives. Each level in the hierarchy is represented in distinct brain regions, from the perirhinal cortex, to posterior hippocampus, to anterior hippocampus and ventromedial prefrontal cortex. Critically, forgetting may be underpinned by different mechanisms at each level in the hierarchy, leading to different patterns of behaviour

    The role of spatial boundaries in shaping long-term event representations

    Get PDF
    When remembering the past, we typically recall ‘events’ that are bounded in time and space. However, as we navigate our environment our senses receive a continuous stream of information. How do we create discrete long-term episodic memories from continuous input? Although previous research has provided evidence for a role of spatial boundaries in the online segmentation of our sensory experience within working memory, it is not known how this segmentation contributes to subsequent long-term episodic memory. Here we show that the presence of a spatial boundary at encoding (a doorway between two rooms) impairs participants’ later ability to remember the order that objects were presented in. A sequence of two objects presented in the same room in a virtual reality environment is more accurately remembered than a sequence of two objects presented in adjoining rooms. The results are captured by a simple model in which items are associated to a context representation that changes gradually over time, and changes more rapidly when crossing a spatial boundary. We therefore provide the first evidence that the structure of long-term episodic memory is shaped by the presence of a spatial boundary and provide constraints on the nature of the interaction between working memory and long-term memory

    Optimasi Portofolio Resiko Menggunakan Model Markowitz MVO Dikaitkan dengan Keterbatasan Manusia dalam Memprediksi Masa Depan dalam Perspektif Al-Qur`an

    Full text link
    Risk portfolio on modern finance has become increasingly technical, requiring the use of sophisticated mathematical tools in both research and practice. Since companies cannot insure themselves completely against risk, as human incompetence in predicting the future precisely that written in Al-Quran surah Luqman verse 34, they have to manage it to yield an optimal portfolio. The objective here is to minimize the variance among all portfolios, or alternatively, to maximize expected return among all portfolios that has at least a certain expected return. Furthermore, this study focuses on optimizing risk portfolio so called Markowitz MVO (Mean-Variance Optimization). Some theoretical frameworks for analysis are arithmetic mean, geometric mean, variance, covariance, linear programming, and quadratic programming. Moreover, finding a minimum variance portfolio produces a convex quadratic programming, that is minimizing the objective function ðð„with constraintsð ð ð„ „ ðandðŽð„ = ð. The outcome of this research is the solution of optimal risk portofolio in some investments that could be finished smoothly using MATLAB R2007b software together with its graphic analysis

    Search for heavy resonances decaying to two Higgs bosons in final states containing four b quarks

    Get PDF
    A search is presented for narrow heavy resonances X decaying into pairs of Higgs bosons (H) in proton-proton collisions collected by the CMS experiment at the LHC at root s = 8 TeV. The data correspond to an integrated luminosity of 19.7 fb(-1). The search considers HH resonances with masses between 1 and 3 TeV, having final states of two b quark pairs. Each Higgs boson is produced with large momentum, and the hadronization products of the pair of b quarks can usually be reconstructed as single large jets. The background from multijet and t (t) over bar events is significantly reduced by applying requirements related to the flavor of the jet, its mass, and its substructure. The signal would be identified as a peak on top of the dijet invariant mass spectrum of the remaining background events. No evidence is observed for such a signal. Upper limits obtained at 95 confidence level for the product of the production cross section and branching fraction sigma(gg -> X) B(X -> HH -> b (b) over barb (b) over bar) range from 10 to 1.5 fb for the mass of X from 1.15 to 2.0 TeV, significantly extending previous searches. For a warped extra dimension theory with amass scale Lambda(R) = 1 TeV, the data exclude radion scalar masses between 1.15 and 1.55 TeV

    Measurement of the top quark mass using charged particles in pp collisions at root s=8 TeV

    Get PDF
    Peer reviewe

    Measurement of t(t)over-bar normalised multi-differential cross sections in pp collisions at root s=13 TeV, and simultaneous determination of the strong coupling strength, top quark pole mass, and parton distribution functions

    Get PDF
    Peer reviewe

    MUSiC : a model-unspecific search for new physics in proton-proton collisions at root s=13TeV

    Get PDF
    Results of the Model Unspecific Search in CMS (MUSiC), using proton-proton collision data recorded at the LHC at a centre-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 35.9 fb(-1), are presented. The MUSiC analysis searches for anomalies that could be signatures of physics beyond the standard model. The analysis is based on the comparison of observed data with the standard model prediction, as determined from simulation, in several hundred final states and multiple kinematic distributions. Events containing at least one electron or muon are classified based on their final state topology, and an automated search algorithm surveys the observed data for deviations from the prediction. The sensitivity of the search is validated using multiple methods. No significant deviations from the predictions have been observed. For a wide range of final state topologies, agreement is found between the data and the standard model simulation. This analysis complements dedicated search analyses by significantly expanding the range of final states covered using a model independent approach with the largest data set to date to probe phase space regions beyond the reach of previous general searches.Peer reviewe

    Measurement of prompt open-charm production cross sections in proton-proton collisions at root s=13 TeV

    Get PDF
    The production cross sections for prompt open-charm mesons in proton-proton collisions at a center-of-mass energy of 13TeV are reported. The measurement is performed using a data sample collected by the CMS experiment corresponding to an integrated luminosity of 29 nb(-1). The differential production cross sections of the D*(+/-), D-+/-, and D-0 ((D) over bar (0)) mesons are presented in ranges of transverse momentum and pseudorapidity 4 < p(T) < 100 GeV and vertical bar eta vertical bar < 2.1, respectively. The results are compared to several theoretical calculations and to previous measurements.Peer reviewe
    • 

    corecore