10 research outputs found

    Enhanced 'In-situ' catalysis via microwave selective heating: catalytic chain transfer polymerisation

    Get PDF
    An extremely facile, single stage, ‘in-situ’, Catalytic Chain Transfer Polymerisation (CCTP) process has been identified, where the optimal polymerisation process was shown to depend upon a combination of catalyst characteristics (i.e. solubility, sensitivity, activity) and the method of heating applied. In comparison to the current benchmark catalyst, the preparation of which is only about 40 % efficient, this represents a significant increase in waste prevention/atom efficiency and removes the need for organic solvent. It was also shown possible to significantly reduce the overall ‘in-situ’ reaction cycle time by adopting different processing strategies in order to minimise energy use. The application of microwave heating was demonstrated to overcome system diffusion/dilution issues and result in rapid, ‘in-situ’ catalyst formation. This allowed processing times to be minimised by enabling a critical concentration of the species susceptible to microwave selective heating to dominate the heat and mass transfer involved

    Preparation and characterization of composites using blends of divinylbenzene-based hyperbranched and linear functionalized polymers

    Get PDF
    In this study, hyperbranched polymers were explored as matrix modifiers to create E-glass fiber (GF) reinforced polymer composites with enhanced mechanical properties. Hyperbranched polymers have lower viscosities than their linear equivalents, potentially providing enhanced fiber wet out leading to improved stress transfer. Hyperbranched (HB), hydrogenated hyperbranched (H-HB), and linear functional (LF) divinyl benzene were blended with linear polystyrene (LP) to form a range of composite matrix formulations. Blends of the HB and LP polymers were used since the neat hyperbranched polymers alone proved to be highly brittle when formed into a film. A neat LP-GF composite was also prepared as control. Of the three matrix modifiers considered, only the H-HB provided an improvement in mechanical properties in comparison to LP-GF. With the addition of 10 and 20 wt% H-HB, respectively, the flexural modulus increased by 25% (p < 0.05) and 36% (p < 0.05) and flexural strength increased by 15% (p < 0.05) and 31% (p < 0.005). The enhanced mechanical properties were attributed to better fiber wetting along with crystallization observed with the addition of 20 wt% H-HB. The non-reactive ethyl (-CH2-CH3) chain end group of the macromolecular H-HB resulted in a plasticizing effect, which in turn improved its wettability. The LP:HB polymer blends, on the other hand, underwent crosslinking due to the presence of the vinyl (-CH-CH2) chain ends leading to poor wettability in comparison to the LP:H-HB and LP:LF blended films and hence lower mechanical properties

    Selective molecular annealing:in situ small angle X-ray scattering study of microwave-assisted annealing of block copolymers

    Get PDF
    Microwave annealing has emerged as an alternative to traditional thermal annealing approaches for optimising block copolymer self-assembly. A novel sample environment enabling small angle X-ray scattering to be performed in situ during microwave annealing is demonstrated, which has enabled, for the first time, the direct study of the effects of microwave annealing upon the self-assembly behavior of a model, commercial triblock copolymer system [polystyrene-block-poly(ethylene-co-butylene)-block-polystyrene]. Results show that the block copolymer is a poor microwave absorber, resulting in no change in the block copolymer morphology upon application of microwave energy. The block copolymer species may only indirectly interact with the microwave energy when a small molecule microwave-interactive species [diethylene glycol dibenzoate (DEGDB)] is incorporated directly into the polymer matrix. Then significant morphological development is observed at DEGDB loadings ≄6 wt%. Through spatial localisation of the microwave-interactive species, we demonstrate targeted annealing of specific regions of a multi-component system, opening routes for the development of "smart" manufacturing methodologies

    Application of targeted molecular and material property optimization to bacterial attachment-resistant (meth)acrylate polymers

    Get PDF
    Developing medical devices that resist bacterial attachment and subsequent biofilm formation is highly desirable. In this paper, we report the optimization of the molecular structure and thus material properties of a range of (meth)acrylate copolymers which contain monomers reported to deliver bacterial resistance to surfaces. This optimization allows such monomers to be employed within novel coatings to reduce bacterial attachment to silicone urinary catheters. We show that the flexibility of copolymers can be tuned to match that of the silicone catheter substrate, by copolymerizing these polymers with a lower Tg monomer such that it passes the flexing fatigue tests as coatings upon catheters, that the homopolymers failed. Furthermore, the Tg values of the copolymers are shown to be readily estimated by the Fox equation. The bacterial resistance performance of these copolymers were typically found to be better than the neat silicone or a commercial silver containing hydrogel surface, when the monomer feed contained only 25 v% of the “hit” monomer. The method of initiation (either photo or thermal) was shown not to affect the bacterial resistance of the copolymers. Optimized synthesis conditions to ensure that the correct copolymer composition and to prevent the onset of gelation are detailed

    Molecular Design of Squalene/Squalane Countertypes via the Controlled Oligomerization of Isoprene and Evaluation of Vaccine Adjuvant Applications

    No full text
    The potential to replace shark-derived squalene in vaccine adjuvant applications with synthetic squalene/poly(isoprene) oligomers, synthesized by the controlled oligomerization of isoprene is demonstrated. Following on from our previous work regarding the synthesis of poly(isoprene) oligomers, we demonstrate the ability to tune the molecular weight of the synthetic poly(isoprene) material beyond that of natural squalene, while retaining a final backbone structure that contained a minimum of 75% of 1,4 addition product and an acceptable polydispersity. The synthesis was successfully scaled from the 2 g to the 40 g scale both in the bulk (i.e., solvent free) and with the aid of additional solvent by utilizing catalytic chain transfer polymerization (CCTP) as the control method, such that the target molecular weight, acceptable dispersity levels, and the desired level of 1,4 addition in the backbone structure and an acceptable yield (∌60%) are achieved. Moreover, the stability and in vitro bioactivity of nanoemulsion adjuvant formulations manufactured with the synthetic poly(isoprene) material are evaluated in comparison to emulsions made with shark-derived squalene. Emulsions containing the synthetic poly(isoprene) achieved smaller particle size and equivalent or enhanced bioactivity (stimulation of cytokine production in human whole blood) compared to corresponding shark squalene emulsions. However, as opposed to the shark squalene-based emulsions, the poly(isoprene) emulsions demonstrated reduced long-term size stability and induced hemolysis at high concentrations. Finally, we demonstrate that the synthetic oligomeric poly(isoprene) material could successfully be hydrogenated such that >95% of the double bonds were successfully removed to give a representative poly(isoprene)-derived squalane mimic

    Catalytic Chain Transfer Mediated Autopolymerization of Divinylbenzene: Toward Facile Synthesis of High Alkene Functional Group Density Hyperbranched Materials

    No full text
    A facile and highly reproducible autopolymerization method, mediated by catalytic chain transfer, for the synthesis of hyperbranched materials with high alkene functional group density is reported. The rapid autopolymerization of divinylbenzene at 150 °C in the absence of any catalytic chain transfer agent was demonstrated to result in the formation of highly cross-linked networks/gels in less than 10 min. Exploitation of the extremely high chain transfer coefficient of bis­[(difluoroboryl)­diphenylglyoximato]­cobalt­(II) delayed gelation and produced good yields of high molecular weight hyperbranched divinylbenzene in under 1 h on a multigram scale. Gas chromatography was employed to monitor the levels of conversion over the course of the reaction. The materials produced were characterized by GPC, MALLS, and viscometry

    Mechanistic Investigation into the Accelerated Synthesis of Methacrylate Oligomers via the Application of Catalytic Chain Transfer Polymerization and Selective Microwave Heating

    No full text
    The synthesis of methyl methacrylate (MMA) oligomers by catalytic chain transfer polymerization (CCTP) is demonstrated to be significantly accelerated by the use of microwave heating. The CCTP reactions, which use a cobalt-based catalyst to very efficiently control the molecular weight of the final polymer, were conducted in both a conventional oil bath and a CEM Discover microwave reactor with a target set point of 80 °C. The required reaction time was shown to be reduced from 300 to 3 min, while also retaining control over the polymerization. Additionally, for the first time the bulk temperature of these catalyzed polymerizations was monitored in both heating methods by the use of internal optical fiber sensors. It was demonstrated that, to monitor the temperature of the reaction correctly, it is essential to use an optical fiber sensor rather than the external IR sensor supplied with the reactor. The acceleration in the synthesis during microwave heating was attributed to selective heating of the radical and oligomeric species within the reaction, which lead to both rapid heating of the reaction bulk to reaction temperature and average reaction temperatures that were higher than the chosen set point. However, comparative reactions carried out under conventional heating (CH) conditions at the true reaction temperature of the microwave experiments (MWH) showed that MWH was able to produce significantly greater yields than the CH experiments after only 3 min, indicating the existence of a real selective heating effect during the reaction. Three methods have been investigated to optimize the acceleration achieved in the MWH experiments while retaining control and yield levels within the MWH experiments. These were varying the; solvent concentration, initiator concentration and chain transfer agent concentration. It was demonstrated that by understanding the influence of the microwave heating that it was possible to retain control over the molecular structure of the product polymer at the accelerated rate

    The Stille Reaction

    No full text
    corecore