14 research outputs found

    Stochastic contraction of myosin minifilaments drives evolution of microridge protrusion patterns in epithelial cells

    Get PDF
    Actin-based protrusions vary in morphology, stability, and arrangement on cell surfaces. Microridges are laterally elongated protrusions on mucosal epithelial cells, where they form evenly spaced, mazelike patterns that dynamically remodel by fission and fusion. To characterize how microridges form their highly ordered, subcellular patterns and investigate the mechanisms driving fission and fusion, we imaged microridges in the maturing skin of zebrafish larvae. After their initial development, microridge spacing and alignment became increasingly well ordered. Imaging F-actin and non-muscle myosin II (NMII) revealed that microridge fission and fusion were associated with local NMII activity in the apical cortex. Inhibiting NMII blocked fission and fusion rearrangements, reduced microridge density, and altered microridge spacing. High-resolution imaging allowed us to image individual NMII minifilaments in the apical cortex of cells in live animals, revealing that minifilaments are tethered to protrusions and often connect adjacent microridges. NMII minifilaments connecting the ends of two microridges fused them together, whereas minifilaments oriented perpendicular to microridges severed them or pulled them closer together. These findings demonstrate that as cells mature, cortical NMII activity orchestrates a remodeling process that creates an increasingly orderly microridge arrangement

    Cortical contraction drives the 3D patterning of epithelial cell surfaces

    Get PDF
    Cellular protrusions create complex cell surface topographies, but biomechanical mechanisms regulating their formation and arrangement are largely unknown. To study how protrusions form, we focused on the morphogenesis of microridges, elongated actin-based structures that are arranged in maze-like patterns on the apical surfaces of zebrafish skin cells. Microridges form by accreting simple finger-like precursors. Live imaging demonstrated that microridge morphogenesis is linked to apical constriction. A nonmuscle myosin II (NMII) reporter revealed pulsatile contractions of the actomyosin cortex, and inhibiting NMII blocked apical constriction and microridge formation. A biomechanical model suggested that contraction reduces surface tension to permit the fusion of precursors into microridges. Indeed, reducing surface tension with hyperosmolar media promoted microridge formation. In anisotropically stretched cells, microridges formed by precursor fusion along the stretch axis, which computational modeling explained as a consequence of stretch-induced cortical flow. Collectively, our results demonstrate how contraction within the 2D plane of the cortex can pattern 3D cell surfaces

    バレイショ近縁種における種の分化 XIII. S.acaule X S.demissumより得た7倍雑種の染色体行動と両親ゲノムの類縁関係

    Get PDF
    中央アンデス産Acaulia群4倍種S. acaule (acl, 2n=48)とメキシコ産Demissa群6倍種S. demissum (dms, 2n=72)のゲノムの類縁関係を明らかにするために, 前者を母本として得た7倍雑種(2n=84)の還元分裂における染色体行動と稔性を調べた。以下その結果を要約する。両種間の交雑は極めて困難で, aclを母とした時のみ受粉花数当り0.02の低率で雑種が得られたにすぎない。得られた雑種は, 両親との形態的比較から, aclの非還元性卵とdmsの還元性花粉の受精に起因するものと推定された。この雑種の第1中期における染色体対合行動は甚だしく多様であったが, その対合型のモードは(12)_+(20)_+8_I, その平均対合頻度は(0.18)_V+(1.11)_+(11.73)_+(18.11)_+(7.26)_Iで, 著しく高頻度の3価形成を示す点が特徴的であった。このような対合行動はその後の染色体行動にも反映し, 第1後期では観察細胞のすべてに平均4.8の遅滞染色体がみられ, 第2中期では94%の細胞が分散染色体を示し, 数的平衡核板頻度は0.6%にすぎなかった。稔性は極めて低く, 調査花粉粒数の27%が一見正常であったが, 自殖及び戻交配のいずれにおいても全く種子を生じなかった。上記の観察結果, 特に高頻度で出現した3価染色体の成因を考察して次の知見を得た。すでにaclはAAA^aA^a, dmsはA^dA^dC_1C_1C_2C_2のゲノム型をもつことが知られているので, 当雑種のゲノム型はAAA^aA^aA^dC_1C_2となる。A^dゲノムは若干の構造的差異はもつもののAゲノム群に属することも知られている。したがって, 当雑種にみられる3価形成は, 主に, aclからのAAとdmsからのA^dの3ゲノム間の染色体対合に由来すると推論でき, 両種はこれらのゲノムの相同性によって相互に関係づけられているものと考えられる。 / Meiotic behavior and fertility were studied in a heptaploid F_1 hybrid (2n=84) obtained from crossing S. acaule (acl, 2n=48) with S. demissum (dms, 2n=72), with the aim of assessing a genomic relationship between the parent species. Crossability between the two species was very low, the number of hybrid plants per pollination being only 0.02. Morphological evidence indicated that the hybrid arose through the union of an unreduced egg of acl and a reduced pollen grain of dms. The hybrid had the mean pairing frequency of (0.18)_V+(1.11)_+(11.73)_+(18.11)_+(7.26)_I per cell at metaphase I, with (12)_+(20)_+8_I as the modal configuration. Its subsequent behaviors were extremely irregular, showing several laggards in all the cells and chromatid bridges in occasional cells at anaphase I and also scattered chromosomes in 94% of the cells at metaphase II. The hybrid gave only 27% stainable pollen and no seed either on selfing or on backcrossing with both parents. The pattern of chromosome pairing found in the hybrid was interpreted in terms of genomic relationship between both parent species. From this, it was suggested that one (A) of the two genomes (designated AA^a) which acl possess in its gametes seems to be closely similar to, but not identical with, one (A^d) of the three genomes (A^dC_1C_2) which dms possess in its gemetes

    Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980-2015 : a systematic analysis for the Global Burden of Disease Study 2015

    Get PDF
    Background Improving survival and extending the longevity of life for all populations requires timely, robust evidence on local mortality levels and trends. The Global Burden of Disease 2015 Study (GBD 2015) provides a comprehensive assessment of all-cause and cause-specific mortality for 249 causes in 195 countries and territories from 1980 to 2015. These results informed an in-depth investigation of observed and expected mortality patterns based on sociodemographic measures. Methods We estimated all-cause mortality by age, sex, geography, and year using an improved analytical approach originally developed for GBD 2013 and GBD 2010. Improvements included refinements to the estimation of child and adult mortality and corresponding uncertainty, parameter selection for under-5 mortality synthesis by spatiotemporal Gaussian process regression, and sibling history data processing. We also expanded the database of vital registration, survey, and census data to 14 294 geography-year datapoints. For GBD 2015, eight causes, including Ebola virus disease, were added to the previous GBD cause list for mortality. We used six modelling approaches to assess cause-specific mortality, with the Cause of Death Ensemble Model (CODEm) generating estimates for most causes. We used a series of novel analyses to systematically quantify the drivers of trends in mortality across geographies. First, we assessed observed and expected levels and trends of cause-specific mortality as they relate to the Socio-demographic Index (SDI), a summary indicator derived from measures of income per capita, educational attainment, and fertility. Second, we examined factors affecting total mortality patterns through a series of counterfactual scenarios, testing the magnitude by which population growth, population age structures, and epidemiological changes contributed to shifts in mortality. Finally, we attributed changes in life expectancy to changes in cause of death. We documented each step of the GBD 2015 estimation processes, as well as data sources, in accordance with Guidelines for Accurate and Transparent Health Estimates Reporting (GATHER). Findings Globally, life expectancy from birth increased from 61.7 years (95% uncertainty interval 61.4-61.9) in 1980 to 71.8 years (71.5-72.2) in 2015. Several countries in sub-Saharan Africa had very large gains in life expectancy from 2005 to 2015, rebounding from an era of exceedingly high loss of life due to HIV/AIDS. At the same time, many geographies saw life expectancy stagnate or decline, particularly for men and in countries with rising mortality from war or interpersonal violence. From 2005 to 2015, male life expectancy in Syria dropped by 11.3 years (3.7-17.4), to 62.6 years (56.5-70.2). Total deaths increased by 4.1% (2.6-5.6) from 2005 to 2015, rising to 55.8 million (54.9 million to 56.6 million) in 2015, but age-standardised death rates fell by 17.0% (15.8-18.1) during this time, underscoring changes in population growth and shifts in global age structures. The result was similar for non-communicable diseases (NCDs), with total deaths from these causes increasing by 14.1% (12.6-16.0) to 39.8 million (39.2 million to 40.5 million) in 2015, whereas age-standardised rates decreased by 13.1% (11.9-14.3). Globally, this mortality pattern emerged for several NCDs, including several types of cancer, ischaemic heart disease, cirrhosis, and Alzheimer's disease and other dementias. By contrast, both total deaths and age-standardised death rates due to communicable, maternal, neonatal, and nutritional conditions significantly declined from 2005 to 2015, gains largely attributable to decreases in mortality rates due to HIV/AIDS (42.1%, 39.1-44.6), malaria (43.1%, 34.7-51.8), neonatal preterm birth complications (29.8%, 24.8-34.9), and maternal disorders (29.1%, 19.3-37.1). Progress was slower for several causes, such as lower respiratory infections and nutritional deficiencies, whereas deaths increased for others, including dengue and drug use disorders. Age-standardised death rates due to injuries significantly declined from 2005 to 2015, yet interpersonal violence and war claimed increasingly more lives in some regions, particularly in the Middle East. In 2015, rotaviral enteritis (rotavirus) was the leading cause of under-5 deaths due to diarrhoea (146 000 deaths, 118 000-183 000) and pneumococcal pneumonia was the leading cause of under-5 deaths due to lower respiratory infections (393 000 deaths, 228 000-532 000), although pathogen-specific mortality varied by region. Globally, the effects of population growth, ageing, and changes in age-standardised death rates substantially differed by cause. Our analyses on the expected associations between cause-specific mortality and SDI show the regular shifts in cause of death composition and population age structure with rising SDI. Country patterns of premature mortality (measured as years of life lost [YLLs]) and how they differ from the level expected on the basis of SDI alone revealed distinct but highly heterogeneous patterns by region and country or territory. Ischaemic heart disease, stroke, and diabetes were among the leading causes of YLLs in most regions, but in many cases, intraregional results sharply diverged for ratios of observed and expected YLLs based on SDI. Communicable, maternal, neonatal, and nutritional diseases caused the most YLLs throughout sub-Saharan Africa, with observed YLLs far exceeding expected YLLs for countries in which malaria or HIV/AIDS remained the leading causes of early death. Interpretation At the global scale, age-specific mortality has steadily improved over the past 35 years; this pattern of general progress continued in the past decade. Progress has been faster in most countries than expected on the basis of development measured by the SDI. Against this background of progress, some countries have seen falls in life expectancy, and age-standardised death rates for some causes are increasing. Despite progress in reducing age-standardised death rates, population growth and ageing mean that the number of deaths from most non-communicable causes are increasing in most countries, putting increased demands on health systems. Copyright (C) The Author(s). Published by Elsevier Ltd.Peer reviewe

    Measuring the health-related Sustainable Development Goals in 188 countries : a baseline analysis from the Global Burden of Disease Study 2015

    Get PDF
    Background In September, 2015, the UN General Assembly established the Sustainable Development Goals (SDGs). The SDGs specify 17 universal goals, 169 targets, and 230 indicators leading up to 2030. We provide an analysis of 33 health-related SDG indicators based on the Global Burden of Diseases, Injuries, and Risk Factors Study 2015 (GBD 2015). Methods We applied statistical methods to systematically compiled data to estimate the performance of 33 health-related SDG indicators for 188 countries from 1990 to 2015. We rescaled each indicator on a scale from 0 (worst observed value between 1990 and 2015) to 100 (best observed). Indices representing all 33 health-related SDG indicators (health-related SDG index), health-related SDG indicators included in the Millennium Development Goals (MDG index), and health-related indicators not included in the MDGs (non-MDG index) were computed as the geometric mean of the rescaled indicators by SDG target. We used spline regressions to examine the relations between the Socio-demographic Index (SDI, a summary measure based on average income per person, educational attainment, and total fertility rate) and each of the health-related SDG indicators and indices. Findings In 2015, the median health-related SDG index was 59.3 (95% uncertainty interval 56.8-61.8) and varied widely by country, ranging from 85.5 (84.2-86.5) in Iceland to 20.4 (15.4-24.9) in Central African Republic. SDI was a good predictor of the health-related SDG index (r(2) = 0.88) and the MDG index (r(2) = 0.2), whereas the non-MDG index had a weaker relation with SDI (r(2) = 0.79). Between 2000 and 2015, the health-related SDG index improved by a median of 7.9 (IQR 5.0-10.4), and gains on the MDG index (a median change of 10.0 [6.7-13.1]) exceeded that of the non-MDG index (a median change of 5.5 [2.1-8.9]). Since 2000, pronounced progress occurred for indicators such as met need with modern contraception, under-5 mortality, and neonatal mortality, as well as the indicator for universal health coverage tracer interventions. Moderate improvements were found for indicators such as HIV and tuberculosis incidence, minimal changes for hepatitis B incidence took place, and childhood overweight considerably worsened. Interpretation GBD provides an independent, comparable avenue for monitoring progress towards the health-related SDGs. Our analysis not only highlights the importance of income, education, and fertility as drivers of health improvement but also emphasises that investments in these areas alone will not be sufficient. Although considerable progress on the health-related MDG indicators has been made, these gains will need to be sustained and, in many cases, accelerated to achieve the ambitious SDG targets. The minimal improvement in or worsening of health-related indicators beyond the MDGs highlight the need for additional resources to effectively address the expanded scope of the health-related SDGs.Peer reviewe

    Drosophila and human FHOD family formin proteins nucleate actin filaments

    No full text
    Formins are a conserved group of proteins that nucleate and processively elongate actin filaments. Among them, the formin homology domain-containing protein (FHOD) family of formins contributes to contractility of striated muscle and cell motility in several contexts. However, the mechanisms by which they carry out these functions remain poorly understood. Mammalian FHOD proteins were reported not to accelerate actin assembly in vitro; instead, they were proposed to act as barbed end cappers or filament bundlers. Here, we show that purified Drosophila Fhod and human FHOD1 both accelerate actin assembly by nucleation. The nucleation activity of FHOD1 is restricted to cytoplasmic actin, whereas Drosophila Fhod potently nucleates both cytoplasmic and sarcomeric actin isoforms. Drosophila Fhod binds tightly to barbed ends, where it slows elongation in the absence of profilin and allows, but does not accelerate, elongation in the presence of profilin. Fhod antagonizes capping protein but dissociates from barbed ends relatively quickly. Finally, we determined that Fhod binds the sides of and bundles actin filaments. This work establishes that Fhod shares the capacity of other formins to nucleate and bundle actin filaments but is notably less effective at processively elongating barbed ends than most well studied formins

    Whole-genome screens reveal regulators of differentiation state and context-dependent migration in human neutrophils

    No full text
    Abstract Neutrophils are the most abundant leukocyte in humans and provide a critical early line of defense as part of our innate immune system. We perform a comprehensive, genome-wide assessment of the molecular factors critical to proliferation, differentiation, and cell migration in a neutrophil-like cell line. Through the development of multiple migration screen strategies, we specifically probe directed (chemotaxis), undirected (chemokinesis), and 3D amoeboid cell migration in these fast-moving cells. We identify a role for mTORC1 signaling in cell differentiation, which influences neutrophil abundance, survival, and migratory behavior. Across our individual migration screens, we identify genes involved in adhesion-dependent and adhesion-independent cell migration, protein trafficking, and regulation of the actomyosin cytoskeleton. This genome-wide screening strategy, therefore, provides an invaluable approach to the study of neutrophils and provides a resource that will inform future studies of cell migration in these and other rapidly migrating cells
    corecore