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ABSTRACT 

Actin-based protrusions vary in morphology, stability, and arrangement on cell surfaces. 

Microridges are laterally-elongated protrusions on mucosal epithelial cells, where they are 

arranged in evenly spaced, maze-like patterns that dynamically remodel by fission and fusion. 

To characterize how microridges form their highly ordered patterns, and investigate the 

mechanisms driving fission and fusion, we imaged microridges in the maturing skin of zebrafish 

larvae. After their initial development, microridge spacing and alignment became increasingly 

well ordered. Imaging F-actin and Non-Muscle Myosin II (NMII) revealed that microridge fission 

and fusion were associated with local NMII activity in the apical cortex. Inhibiting NMII blocked 

fission and fusion rearrangements, reduced microridge density, and altered microridge spacing. 

High-resolution imaging allowed us to image individual NMII minifilaments in the apical cortex of 

cells in live animals, revealing that minifilaments are tethered to protrusions and often 

connected adjacent microridges. NMII minifilaments connecting the ends of microridges fused 

them together, whereas minifilaments oriented perpendicular to microridges severed them or 

pulled them closer together. These findings demonstrate that as cells mature, cortical NMII 

activity orchestrates a microridge remodeling process that creates an increasingly orderly 

microridge arrangement.  



 

INTRODUCTION 

Cells create diverse actin-based protrusions to carry out a wide variety of functions. Not only do 

protrusions vary in shape and size, but also in persistence, dynamics, and their relative 

arrangement on cells. For example, lamellipodia extend and retract within seconds or minutes 

(Giannone et al., 2007), whereas invadopodia persist for hours (Murphy and Courtneidge, 

2011), and stereocilia are stable throughout an animal’s life (Narayanan et al., 2015; Zhang et 

al., 2012). The stability and plasticity of protrusions depends on the regulation of their 

constituent actin filaments, but those regulatory mechanisms vary. For example, despite the fact 

that microvilli maintain a relatively stable height, actin filaments within them are constantly 

turned over (Loomis et al., 2003; Meenderink et al., 2019; Tyska and Mooseker, 2002). By 

contrast, the stability of stereocilia reflects extreme stability of their actin filaments, which persist 

for months (Narayanan et al., 2015; Zhang et al., 2012). The motility and relative arrangement 

of protrusions on cells are also regulated by diverse mechanisms. For instance, microvilli move 

rapidly and independently on cell surfaces (Meenderink et al., 2019), but form stable clusters by 

establishing protocadherin-based connections at their tips (Crawley et al., 2014; Meenderink et 

al., 2019). Stereocilia, on the other hand, form highly stable and stereotyped arrangements on 

cells, and their orientation is strictly dictated by planar cell polarity (Tarchini and Lu, 2019). 

Identifying mechanisms regulating the arrangement of protrusions is critical to understanding 

how cell surfaces acquire diverse morphologies. 

 

Microridges are laterally-elongated protrusions found on the apical surfaces of mucosal 

epithelial cells (Depasquale, 2018). Although microridges are less studied than other 

protrusions, recent work in zebrafish periderm cells, which form the most superficial layer of the 

skin, have begun to identify mechanisms underlying microridge morphogenesis. Distinct from 

other protrusions that emerge and extend as unitary structures, microridges form from the 

coalescence of finger-like precursor protrusions called pegs (Lam et al., 2015; Pinto et al., 2019; 
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van Loon et al., 2020). Microridge development requires specification of apical-basal cell 

polarity (Magre et al., 2019; Raman et al., 2016), activity of the branched actin nucleation 

complex Arp2/3 (Lam et al., 2015; Pinto et al., 2019; van Loon et al., 2020), Plakin cytolinkers 

(Inaba et al., 2020), keratin filaments (Inaba et al., 2020), and cortical non-muscle myosin II 

(NMII) contraction, which concomitantly promotes apical constriction (Lam et al., 2015; Pinto et 

al., 2019; van Loon et al., 2020). Like microvilli, actin filaments within microridges constantly 

turn over (Lam et al., 2015), but the recruitment of keratin filaments by Plakin cytolinkers helps 

preserve microridge structure in the face of actin turnover (Inaba et al., 2020). Microridges 

exhibit unusual dynamics, undergoing fission and fusion to form new patterns (Lam et al., 2015). 

How microridge patterns mature after their initial formation has not been determined, and the 

molecular mechanisms executing fission and fusion are unknown. 

 

Microridges form striking, highly ordered patterns--neighboring microridges are periodically 

spaced and tend to align parallel to one another, filling cell surfaces in maze-like arrangements 

that resemble the parallel organization of molecules in liquid crystals, referred to as a “nematic” 

organization (Needleman and Dogic, 2017). These patterns may optimize cell surface energy 

and/or the function of microridges in mucus retention. Microridge arrangements resemble the 

tissue-level patterns that arise through cell-cell signaling interactions obeying Alan Turing’s 

elegant reaction-diffusion model (Turing, 1952). At the subcellular level, however, periodic 

patterns often involve the regular arrangement of cytoskeletal elements. For example, axons 

(Xu et al., 2013), dendrites (Han et al., 2017), cilia (Jia et al., 2019), and the C. elegans 

syncytial epidermis (Costa et al., 1997) contain periodic membrane-associated cytoskeletal 

structures. Although reaction-diffusion mechanisms can explain some subcellular phenomena, 

like waves of actin polymerization in the cortex of dividing oocytes (Bement et al., 2015), regular 

subcellular patterns are often created by the arrangement of molecules themselves. For 

example, the spacing of actin rings in neurites is determined by the size of the spectrin 
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tetramers that separate them (Xu et al., 2013). Nothing is known about the mechanisms that 

create highly ordered, periodic microridge patterns. 

  

The membranes of epithelial cells associate with a thin actomyosin filament network, called the 

cortex (Kelkar et al., 2020). NMII forms bipolar minifilaments within the cortex, which contract 

actin filaments to generate forces that regulate membrane tension, cytokinesis, and cellular 

morphogenesis (Kelkar et al., 2020; Martin and Goldstein, 2014). Both the density and specific 

arrangement of NMII minifilaments influence cortical contractility (Kelkar et al., 2020). The 

cortical network is attached to cell junctions, and pulls them to constrict apical surfaces during a 

variety of morphogenetic events (Martin and Goldstein, 2014). Cortical contraction also 

regulates protrusion morphogenesis. For example, contraction stimulates actin treadmilling to 

regulate microvillar length (Chinowsky et al., 2020). In zebrafish periderm cells, pulsatile NMII 

activity lowers apical membrane tension to permit the formation and elongation of microridges 

from peg precursors (van Loon et al., 2020). Cortical NMII contraction continues in these cells 

after microridges have formed (van Loon et al., 2020), but the functional significance of these 

later contractile events is unknown.    

 

In this study, we characterized microridge dynamics and patterning as cells matured, and 

investigated the role of NMII in these processes. We found that after initial development, fission 

and fusion continuously remodel microridges, but these events dampen as development 

proceeds. High-resolution imaging revealed that cortical NMII minifilaments connect adjacent 

microridges, and that their specific orientation relative to microridges dictates the nature of 

rearrangements. These findings demonstrate that cortical NMII minifilaments are not only 

required for microridge formation, but also regulate microridge fission, fusion, and alignment to 

pattern maturing epithelial cell surfaces. 

 

https://paperpile.com/c/3TGfOy/Y5gg
https://paperpile.com/c/5KxnEo/0EvX
https://paperpile.com/c/5KxnEo/0EvX+bF1n
https://paperpile.com/c/5KxnEo/0EvX
https://paperpile.com/c/5KxnEo/bF1n
https://paperpile.com/c/5KxnEo/GwWP
https://paperpile.com/c/5KxnEo/p6z1
https://paperpile.com/c/5KxnEo/p6z1


 

  



 

RESULTS 

 

Microridge patterns mature in larval zebrafish 

To determine how microridge spacing and patterning change as the developing zebrafish skin 

matures, we imaged zebrafish periderm cells expressing the F-actin reporter Lifeact-GFP (Riedl 

et al., 2008) in 48, 72 and 96 hours post-fertilization (hpf) fish (Fig 1A). Microridges had already 

formed and elongated by 48hpf, but became longer on average during this period (Fig S1A-B), 

likely reflecting a specific reduction in pegs and short microridges (Fig S1C). Total microridge 

density on the apical surface increased between 48 and 96hpf (Fig 1B), which could result from 

an increase in microridges or reduced apical area. However, apical cell areas were not reduced, 

but were in fact slightly larger at 96hpf than at 48 or 72hpf (Fig S1D). Since microridge 

development occurs in tandem with apical constriction during early development (van Loon et 

al., 2020), these observations suggest that changes to microridges after 48hpf represent a 

distinct maturation process. 

 

One of the most striking features of microridges is their regularly spaced and aligned 

arrangement, reminiscent of the nematic  organization of molecules in liquid crystals 

(Needleman and Dogic, 2017). To investigate how microridge spacing changes as cells mature, 

we measured the distance between every point on each microridge and the nearest point on a 

neighboring microridge (Fig 1C-D). The mode, median, and mean distances between 

microridges were similar between the three different stages (Fig 1E, S1E-F) and, as expected, 

corresponded to the orthogonal distance between adjacent microridges (Fig 1A, C-D). To 

measure spacing variability, we compared the interquartile range of distances, revealing that 

this measure decreased over time (Fig 1F). Variability measured as standard deviation or 

coefficient of variation showed the same result (not shown).  These observations suggest that 

initially variable microridge spacing matured towards a specific spacing distance.  
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To determine how microridge alignment changes as microridge spacing becomes less variable, 

we color coding regions of cells containing microridges aligned in the same orientation. The total 

length of borders between local regions of aligned microridges (white areas between domains in 

Fig 1G bottom) indicated the degree of overall alignment in each cell; we used the inverse of 

this measurement to calculate an “alignment index” that increases as alignment increases. This 

analysis revealed that the number of domains with aligned microridges decreased, (and each 

domain increased in area), over time (Fig 1G-H). These observations demonstrate that 

microridges increasingly align parallel to one another as the skin develops.  

 

To determine if population-level changes in microridge patterning reflect microridge maturation 

in individual cells, we scatter-labeled periderm cells with RFP, enabling us to identify the same 

cells day-to-day, and thus track how microridge spacing and alignment change over time. 

Although each cell behaved differently, on average, microridge density increased, spacing 

became less variable, and microridges increasingly aligned between 48 and 96hpf (Fig 2), 

demonstrating that population-level trends in microridge arrangement reflect the maturation of 

microridge patterning in individual cells towards a nematic pattern.  

 

Microridges continuously rearrange 

To determine the mechanism by which microridge patterns change over time, we performed 

time-lapse imaging of periderm cells expressing Lifeact-GFP at 30-second intervals. At each 

developmental stage, pegs, the finger-like precursor protrusions that coalesce to form 

microridges, continued to dynamically appear within and between microridges (Video 1), likely 

contributing to microridge lengthening. As previously observed (Lam et al., 2015), microridges 

underwent two types of rearrangements that altered their pattern. First, intact microridges 

sometimes broke apart into two separate microridges; second, two separate microridges 

https://paperpile.com/c/5KxnEo/Sn0M


 

sometimes fused end-to-end to form a longer microridge (Fig 3A, Video 1 and 2). Imaging a 

reporter for the plasma membrane demonstrated that these events reflect fission or fusion of the 

whole protrusion, not just of its internal actin structure (Figure 3B, Video 3). As microridges 

matured, rearrangement events decreased from 0.362 events/μm⋅min at 48hpf to 0.155 and 

0.115 events/μm⋅min at 72 and 96hpf, respectively (Fig 3C, Video 1). Fission and fusion events 

occurred with roughly equal frequency, and this proportion did not change over time (Fig 3D), 

but the frequency of these rearrangements decreased as the pattern matured (Fig 3E, 

Spearman Correlation Coefficient = -0.832). 

 

Cell stretching does not induce microridge rearrangement  

Periderm cells are constantly pushed and pulled by neighboring cells as the epidermis grows. 

We therefore speculated that microridge fission and fusion may be induced by forces associated 

with cell shape distortion. To test this idea, we ablated periderm cells on either side of an 

observed cell using a laser on a 2-photon microscope (O’Brien et al., 2009b; van Loon et al., 

2020). This procedure caused the central cell to stretch between the two wounds, and often 

pucker or bulge in the orthogonal axis. Surprisingly, cell elongation did not increase microridge 

fission or fusion, but simply distorted microridges to accommodate the cells’ new shapes (Fig 

3F, Video 4). This observation suggests that microridges do not undergo fission or fusion simply 

as a result of cellular distortion, and thus implies that remodeling events are actively regulated. 

 

Microridge rearrangements require cortical NMII contraction 

The apical cortex of periderm cells experiences pulsatile NMII-based contractions through at 

least 48hpf (van Loon et al., 2020). These contractions are required for apical constriction and 

the coalescence of peg precursors to form and elongate microridges (van Loon et al., 2020), but 

later functions have not been described. To test if cortical contraction affects microridge fission 

https://paperpile.com/c/5KxnEo/GNQOI+p6z1
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or fusion events, we made time-lapse videos of periderm cells expressing fluorescent reporters 

for both F-actin (Lifeact-Ruby) and NMII (Myl12.1-EGFP) (Maître et al., 2012; van Loon et al., 

2020). At 48hpf, periderm cells displayed local pulses of NMII reporter fluorescence in the apical 

cortex (Fig 4A, Video 5), which we previously found to reflect NMII contraction (van Loon et al., 

2020). Many of these contraction events correlated spatially and temporally with microridge 

rearrangements (Fig 4A). To quantify this correlation, we measured the distance between 

microridge rearrangement events and the nearest detectable NMII contractile pulse in the same 

frame. On average, 41% of microridge rearrangements occurred within 1μm of an NMII 

contraction (Fig 4B). By contrast, when the NMII reporter channel was rotated 90°, only 22% 

occurred within 1μm of a contraction (Fig 4B), indicating that the coincidence between 

contraction and rearrangement events did not occur by chance. These observations likely 

underestimate the number of rearrangement events associated with contraction, since 

contractions may be shorter-lasting or dimmer than we can detect with our reporter. NMII 

contractions equally correlated with fission and fusion events (Fig 4C). 

 

To directly test if NMII contraction is required for microridge rearrangements, we treated 48hpf 

fish with the specific NMII inhibitor blebbistatin (Straight et al., 2003) for one hour, then made 

9.5-minute videos of periderm cells expressing Lifeact-GFP. NMII inhibition dramatically 

reduced fission and fusion compared to controls (Fig 4D-E, Video 6), demonstrating that NMII 

activity is required for microridge remodeling.  

 

NMII contraction regulates microridge density and spacing 

Given that NMII contraction promotes microridge rearrangements, and that these dynamic 

events negatively correlate with microridge alignment, we hypothesized that inhibiting NMII 

contraction may disrupt microridge maturation. To determine the long-term consequences of 

suppressing NMII activity, we treated zebrafish with blebbistatin for 24 hours, starting at 48hpf. 
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Compared to controls, microridges in blebbistatin-treated animals were shorter, distributed less 

densely, and spaced more widely (Fig 5A-E). These observations indicate that microridges must 

be actively maintained by contraction, which can facilitate the incorporation of new pegs into 

established microridges. Blebbistatin also increased microridge alignment. This effect on 

alignment may be a consequence of the lower microridge density, since our alignment index 

measures the number of domains containing aligned microridges (Fig 5B,D,F), but could also 

indicate that suppressing contraction allows the system to settle into a local energy minimum 

(see Discussion). Since long-term NMII inhibition can have deleterious, indirect effects on cells, 

we compared microridges on individual cells before and after 1-hour blebbistatin treatment. 

Similar to 24-hour treatment, 1-hour exposure to blebbistatin disrupted microridge spacing, 

decreasing density and increasing the microridge alignment index (Fig 6).   

 

High-resolution imaging reveals individual NMII minifilaments in the cortex 

Since NMII inhibition experiments could not disambiguate NMII’s role in regulating microridge 

fission and fusion, length maintenance, and spacing, we addressed these questions by imaging 

NMII organization and activity in the periderm cortex directly. To image NMII and F-actin with 

improved spatial resolution, we used Airyscan microscopy (Weisshart, 2014). Using this 

approach, the NMII reporter often appeared as pairs of puncta (Fig 7A). The Myl12.1-EGFP 

NMII reporter is a fusion of EGFP to a myosin regulatory light chain (Maître et al., 2012; van 

Loon et al., 2020), which binds near myosin heads at opposing ends of NMII minifilaments. We 

thus speculated that puncta pairs represent ends of single bipolar minifilaments. Consistent with 

this possibility, the median distance between intensity maxima of NMII reporter doublets was 

281nm (Fig 7B), similar to the reported length of bipolar minifilaments assembled in vitro 

(~300nm in length; (Billington et al., 2013)). To further test if these structures are individual 

minifilaments, we imaged periderm cells expressing reporters for both NMII light chain (Myl12.1-

Ruby) and a C-terminally tagged NMII heavy chain (Myh9a-EGFP). A fluorophore at the C-

https://paperpile.com/c/5KxnEo/x1FL1
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terminus of NMII heavy chains should localize to the middle of minifilaments, between NMII 

heavy chain heads (Fig 7C-D). Puncta in periderm cells expressing both reporters were 

arranged in the expected alternating pattern (Fig 7C-D). Thus, our imaging system allows us to 

distinguish individual NMII minifilaments within the plane of the apical cortex in cells of living 

animals.  

 

Cortical NMII minifilaments associate with pegs and microridges 

To determine how NMII minifilaments are arranged relative to cell protrusions, we imaged them, 

along with F-actin, at several developmental stages. Prior to microridge formation (16hpf), NMII 

minifilaments in the apical cortex were closely associated with microridge peg precursors (Fig 

7A), and continued to associate with protrusions as pegs coalesced to form microridges. 

Rotating the NMII channel relative to the actin channel significantly reduced the proximity 

between actin and NMII fluorescence signals, demonstrating that the association of 

minifilaments with protrusions did not occur by chance (Fig S2A-B). At 24hpf, NMII minifilaments 

were often attached to two separate microridges, bridging them end-to-end or side-to-side (Fig 

7E). This organization was maintained as microridges matured: At 48hpf many cortical NMII 

“bridges” formed perpendicular connections between adjacent microridges, often appearing to 

consist of two end-to-end minifilaments (Fig 7E). 

 

NMII minifilaments orchestrate microridge rearrangement and spacing 

To observe how the organization of NMII minifilaments in the cortex relates to protrusion 

dynamics, we made high-resolution videos of periderm cells expressing Lifeact-Ruby and 

Myl12.1-EGFP. During early morphogenesis, appearance and disappearance of pegs often 

correlated with appearance and disappearance of NMII reporter signal, and movement of pegs 

was associated with a corresponding movement of the NMII reporter (Fig 8A, Video 7), 

confirming that NMII minifilaments are tethered to protrusions. At later stages, when microridges 



 

remodel, the orientation of NMII minifilaments correlated with the type of microridge 

rearrangement observed. Minifilaments connecting the ends of two microridges appeared to pull 

them together, fusing them into a longer microridge (Fig 8B, Fig S2C, Video 7). By contrast, 

minifilaments oriented perpendicular to microridges were often associated with fission events, 

which occurred at the point where microridges attached to the minifilaments (Fig 8B, Fig S2D, 

Video 7). To quantify these observations we identified 30 fusion and 30 fission events by 

examining the actin channel, then examined the NMII channel to score the orientation of 

minifilaments relative to these events. Remarkably, in all cases of fusion (30/30), a minifilament 

appeared between the ends of the microridges that were about to fuse. Similarly, in all cases of 

fission (30/30), a minifilament was attached to the parent microridge prior to fission.   

 

Minifilaments arranged perpendicular to microridges also appeared to regulate microridge 

spacing: the attachment of minifilaments to two parallel microridges brought them closer 

together, whereas their disappearance or detachment allowed the two microridges to drift apart 

(Fig 8C, Fig S2E, Video 7). These observations suggest that attachment to  cortical NMII 

minifilaments allows microridges to sample different spacing arrangements on the apical 

surface.  

 

 

  



 

DISCUSSION 

Our study reveals that cortical NMII orchestrates a unique process for the patterning and 

maturation of microridges. Cells retain microridges on their surfaces for days, and likely even 

weeks, but, unlike extremely stable stereocilia, microridges continuously remodel through an 

NMII-mediated “recombination” process of fission and fusion as they mature towards a more 

ordered, nematic arrangement (Fig 9). Thus, at least during the first week of development, 

microridges are not permanent cell identifiers, like a fingerprint, but evolving structures that form 

new patterns over time.  

 

Microridge pattern maturation minimizes surface energy  

The increasing nematic order of maturing microridge patterns suggests that they are governed 

by an energy minimization principle, which can be explained with concepts defined by physics. 

Optimal parallel packing of microridges likely minimizes the bending and stretching energy of 

the lipid bilayer that is coupled to the underlying cortex. Consistent with this idea, we found that 

the size of local alignment domains increased, and their number decreased, as microridge 

patterns matured (Fig 1, Fig 2). Inevitably, initial disorder in the emerging pattern brings about 

sharp boundaries between the domains of local alignment. These boundaries are defects in the 

nematic order, and thus associated with an energy penalty, a phenomenon well-known in liquid 

crystals (Needleman and Dogic, 2017). The global energy minimum likely corresponds to 

concentric microridges arranged in parallel rings, like a target. Our observations show that 

microridge patterns, which are initially in states with many alignment domains, progress towards 

this well-ordered global minimum over time, a process that requires crossing energy barriers 

associated with fission and fusion of preexisting microridges.  

 

Our results suggest that myosin activity facilitates the energy barrier crossing, promoting fission 

and fusion and thus rearranging microridge patterns. The fact that myosin activity leads to 

https://paperpile.com/c/5KxnEo/7ulm


 

microridge fission and fusion with approximately equal probability (Fig 3D) suggests that it does 

not increase their order or disorder per se, but rather provides quantal “kicks” that locally alter 

pattern topology. Thus, myosin activity is analogous to the thermodynamic temperature of the 

pattern--by randomly breaking and fusing individual microridges, myosin allows the pattern to 

cross energy barriers separating local energy minima. Following this thermodynamic analogy, 

the decrease in microridge rearrangement events over time corresponds to slowly lowering the 

temperature, or annealing, which is well-known in physics to help systems reach lower energy 

states on complex energy landscapes with multiple minima (van Laarhoven and Aarts, 1987). 

Blebbistatin may represent rapid quenching (a sharp temperature drop) that allows the system 

to descend to the closest energy minimum, perhaps explaining why blebbistatin in our 

experiments increased the alignment index. 

 

Microridges are modular protrusions 

Both the initial formation and remodeling of microridges demonstrate that they are modular 

structures: individual units (pegs) assemble into longer structures (microridges); once 

assembled, microridges can be broken at any point and attached to other microridges. This 

modular nature distinguishes microridges from other protrusions. However, the apparent 

simplicity of this process elides the complexity of rearrangement events at the molecular level, 

which likely involve multiple, locally regulated activities. Fission requires not just severing actin 

filaments, but also locally disassembling a supramolecular network of F-actin, keratin filaments, 

and actin-binding proteins (Pinto et al., 2019), as well as membrane remodeling. Microridge 

remodeling events require NMII activity, but fission is likely instigated by upstream regulators 

that coordinate multiple biochemical activities. Such roles could be played by Rho family 

GTPases, which can regulate both F-actin stability and NMII contraction (Kelkar et al., 2020; 

Ridley, 2015), or Aurora B kinase, which promotes NMII activity (Minoshima et al., 2003; Touré 

et al., 2008) and disassembly of actin and keratin filaments (Field et al., 2019) at the cytokinetic 
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furrow. Fusion likely requires local F-actin polymerization, the activity of F-actin cross-linking 

proteins that connect the cytoskeletal networks of the two parent microridges, and the 

reintegration of keratin filaments, which have the potential to connect with themselves end-to-

end (Çolakoğlu and Brown, 2009). Identifying the molecular mechanisms that execute fission 

and fusion would make it possible to test how each type of event separately contributes to the 

patterning process.  

 

The orientation of cortical NMII minifilaments determines the nature of microridge 

rearrangements  

Visualizing individual NMII minifilaments in the cortex of living cells provided insight into how 

they execute microridge rearrangements, as well as evidence that they play a direct role in 

microridge spacing (Fig 9). From the earliest steps of microridge morphogenesis, cortical 

minifilaments associate with protrusions (Fig S2A-B). This observation suggests that the ends of 

individual minifilaments are biochemically tethered to the base of pegs and microridges, 

orthogonal to actin filaments in these protrusions. When two pegs are tethered to opposite ends 

of a minifilament, contraction brings them closer together, providing an opportunity for them to 

fuse into a nascent microridge. Similarly, contraction of peg-to-microridge minifilament bridges 

may contribute to microridge elongation, and contraction of minifilament bridges connecting two 

microridge ends may promote microridge fusion. The recruitment of keratin filaments into these 

growing protrusions likely helps stabilize them (Inaba et al., 2020), preventing fusion events 

from reversing. By contrast, minifilaments tethered to the sides of microridges sometimes 

promoted fission, suggesting that minifilaments may pull on microridges to facilitate their local 

disassembly. If minifilaments bridged two parallel microridges, they often appeared to pull them 

closer together without severing them, providing direct evidence that NMII can regulate 

microridge spacing. At later stages, microridges were often linked by a bridge of two 

perpendicular minifilaments aligned end-to-end. This arrangement raises the intriguing 
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possibility that minifilaments could serve as molecular spacers for aligned microridges, similar to 

how spectrin tetramers determine the spacing of actin rings in axons (Xu et al., 2013). However, 

it is at least as likely that spacing length is determined by another factor, such as the 

minimization of membrane bending energy, and that minifilaments organize to accommodate 

that spacing. 

 

Our findings demonstrate a surprisingly direct role for individual cortical minifilaments in 

physically pulling protrusions to rupture them, bring them together, or alter their relative spacing. 

In a previous study, we identified a mechanistically distinct role for NMII activity during the 

earlier morphogenetic step of peg coalescence to form microridges (van Loon et al., 2020). 

Computational modeling suggested that cortical NMII activity reduced surface energy to allow 

peg coalescence, and, indeed, experimentally reducing surface energy by treating animals with 

hyperosmolar media was sufficient to induce the spontaneous formation of microridges from 

pegs. Moreover, stretching cells by laser ablation induced cortical flow that promoted oriented 

peg coalescence. The distinct NMII-mediated mechanisms that we have identified in these two 

studies--reducing surface tension and directly pulling on microridges--act over different spatial 

scales, but likely both contribute to peg coalescence, since in this study we often saw that two 

pegs are often connected by a minifilament. Conversely, the reduction of surface tension by 

cortical NMII contraction may also contribute to fission, fusion, and spacing events, alongside 

the direct pulling mechanism that we identified here. However, altering surface tension is not 

alone sufficient to cause fission and fusion, since stretching cells did not appreciably increase 

the rate of these events. 

 

Minifilaments are typically thought to be isotropically oriented in the cortex of interphase cells 

(Kelkar et al., 2020), but our findings suggest that their association with microridges causes 

them to adopt a highly organized arrangement in the cortex of periderm cells. In mature 

https://paperpile.com/c/5KxnEo/Oe9z
https://paperpile.com/c/5KxnEo/p6z1
https://paperpile.com/c/5KxnEo/0EvX


 

periderm cells, since microridges align with cell borders and with one another, their arrangement 

approximates an ideal target-like concentric pattern; because minifilaments form perpendicular 

bridges between adjacent microridges, they are predominantly arranged radially towards the 

center of cells. Since contractility is influenced not just by minifilament density, but also the 

relative arrangement of NMII in the cortex (Kelkar et al., 2020), this unusual radial minifilament 

organization likely endows periderm cells with unique contractile properties. Collectively, our 

observations reveal a surprisingly organized arrangement of cortical minifilaments, indicating 

that understanding how cortical contraction executes specific biological processes will require a 

better understanding of cortical minifilament architecture.  
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MATERIALS AND METHODS 

 

Zebrafish 

Zebrafish (Danio rerio) were raised at 28.5°C on a 14-h/10-h light/dark cycle. Embryos were 

raised at 28.5°C in embryo water composed of 0.3 g/Liter Instant Ocean salt (Spectrum Brands, 

Inc.) and 0.1% methylene blue. Previously characterized zebrafish lines in this paper include AB 

wild-type fish (ZFIN: ZDB-GENO-960809-7), Tg(krt5:Gal4) (Rasmussen et al., 2015), 

Tg(UAS:Lifeact-GFP) (Helker et al., 2013), Tg(krt5:Lifeact-Ruby), and Tg(krt5:Myl12.1-EGFP) 

(van Loon et al., 2020). Tg(krt5:Gal4/+;UAS:Lifeact-GFP/+) zebrafish were incrossed or 

outcrossed to WT and screened for brightness on the day of imaging using a fluorescence 

dissecting microscope. For Airyscan microscopy, Tg(krt5:Myl12.1-EGFP) zebrafish were 

incrossed and injected with krt5:Lifeact-Ruby and krt5:Myl12.1-EGFP plasmids to improve 

brightness. All experimental procedures were approved by the Chancellor’s Animal Research 

Care Committee at the University of California, Los Angeles. 

 

Plasmids  

Previously characterized plasmids in this paper include krt5:Myl12.1-EGFP (van Loon et al., 

2020) and UAS:mRuby-PH-PLC (Jiang et al., 2019). krt5-Myh9a-mCherry was constructed 

using the Gateway-based Tol2-kit (Kwan et al., 2007). The following vectors used to construct 

krt5-Myh9a-mCherry have previously been described: p5E-krt5 (Rasmussen et al., 2015), p3E-

mCherrypA (Kwan et al., 2007), and pDestTol2pA2 (Kwan et al., 2007). The Myh9a coding 

sequence was cloned from a cDNA library of 5dpf zebrafish larvae using the following primers: 

Forward: 5’-GGGGACAAGTTTGTACAAAAAAGCAGGCTATATGTCAGACGCAGAGAAGTTC-

3’; Reverse: 5’-GGGGACCACTTTGTACAAGAAAGCTGGGTCTTACTCAGGAGTTGGCTCG-3’. 
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For transient transgene expression, ~5 nL plasmid (~25 ng/μL) was injected into single cell 

zebrafish embryos. 

 

Microscopy 

Live fluorescent images and videos of periderm cells were acquired on a Zeiss LSM800 

confocal microscope. Images were acquired with Zeiss Zen Blue software using an EC Plan-

Neofluar 40×/1.30 oil DIC M27 objective with 2–3× digital zoom. Optimal resolution and Z-stack 

intervals were set using Zen software, except for videos for which a Z-stack interval of 0.75 μm 

was used to improve imaging speed. During imaging, zebrafish slide chambers were mounted 

on a heated stage set to 28°C. The x-y position and z-stack were occasionally adjusted during 

time-lapse imaging to keep the cells of interest in the frame. For longitudinal experiments 

between 48-96hpf, zebrafish were rescued from mounting agarose each day after imaging using 

forceps, then placed in separate petri dishes for mounting and imaging on subsequent days. 

 

Airyscan microscopy was performed on a Zeiss LSM 880 confocal microscope with Airyscan in 

the Broad Stem Cell Institute Research Center/Molecular, Cell and Developmental Biology 

microscopy core at UCLA. Images were acquired with Zeiss Zen Black software using an Plan-

Apochromat 63x/1.4 Oil DIC M27 objective with 2–5× digital zoom. After acquisition, Airyscan 

processing was performed with the default settings on Zen Black. 

 

To ablate periderm cells expressing Lifeact-GFP, we adapted a previously described method 

(O’Brien et al., 2009a; van Loon et al., 2020). Videos of cell stretching by periderm cell ablation 

were acquired using Zeiss Zen Black Software on a Zeiss LSM 880 multiphoton microscope 

using an EC Plan-Neofluar 40×/1.30 oil DIC M27 objective and a Coherent Chameleon Ultra II 

laser at a wavelength of 813 nm. A 488-nm laser was used to find and focus on the cell surface 

https://paperpile.com/c/5KxnEo/HHef+p6z1


 

at 250× digital zoom, and the cell was then exposed to 813 nm laser illumination for 3–4 s at 5–

6% laser power using “live” scanning. 

 

Drug Treatment 

(-)-Blebbistatin (Cayman Chemical) was dissolved in DMSO (Fisher Scientific). Treatment solutions 

were made with Ringer’s Solution and included the inhibitor, or equivalent concentration of 

DMSO (≤1%), as well as up to 0.4 mg/mL MS-222 (Sigma). Zebrafish larvae were exposed to the 

treatment solution for the specified period of time, then mounted in agarose and immersed in 

the same solution. For treatments longer than 2 hours, larvae were initially exposed to a 

treatment solution without MS-222 and then transferred to a similar solution containing up to 0.4 

mg/mL MS-222 ≥30min prior to imaging. For longitudinal experiments with blebbistatin, fish 

were first mounted in agarose and imaged, then rescued from agarose using forceps and 

exposed to treatment solutions. Approximately 30 minutes after exposure to treatment solutions, 

zebrafish were again mounted in agarose and slide chambers were filled with treatment 

solution. Zebrafish were imaged again after 1-hour exposure to treatment solutions. 

 

Image Analysis and Statistics 

All statistical testing was performed using RStudio (RStudio, Inc.). Data distributions were 

assessed for normality using the Shapiro-Wilk test and visually inspected using Q-Q plots. The 

appropriate parametric or non-parametric tests were then selected based on the normality of the 

data distributions being compared. 

 



 

Microridge analysis was performed using a custom Python script. Images of periderm cells were 

sum-projected and smoothened with a Gaussian filter. Pixel intensities were then normalized 

based on the modality of their intensity distribution. Unimodal distributions were normalized to 

the full width at the half maximum, while bimodal distributions were normalized to values 

between both maxima. Images were then processed with a Hessian filter, thresholded and 

skeletonized. Vectorized skeletons were smoothened and fitted to a normalized cell image to 

produce vectorized microridge lines. Distances between microridges and microridge orientations 

were then calculated. Microridge alignment domains were calculated by interpolating Q-tensor 

(Q = v ⊗  v - ½I, where v is a unit tangent vector and I is a unit tensor).  

 

Image management for presentation was performed using FIJI (Schindelin et al., 2012).  The 

brightness and contrast of images were adjusted for the purpose of presentation.  All movies 

were stabilized for presentation and analysis purposes using the Image Stabilizer FIJI plugin 

(“Kang Li @ CMU - Image Stabilizer Plugin for ImageJ,” n.d.). 

 

Microridge fusion and fission events were identified manually using the FIJI Multi-point tool. To 

measure distances from NMII contractions to fusion and fission events, NMII images were 

smoothened and contractions were automatically thresholded in FIJI with the Triangle method, 

then distances were measured between microridge rearrangement events and the edge of the 

nearest contraction using ‘rgeos’ and ‘sp’ R packages.  
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FIGURE LEGENDS 

Figure 1. Microridge patterns mature over time 

A) Representative images of periderm cells expressing Lifeact-GFP in zebrafish larvae at the 

specified developmental stage. Images were inverted, so that high intensity fluorescence 

appears black and low intensity is white. Inset at 96hpf is an intensity line profile plot along the 

dashed red line in the associated image, showing the regular spacing between adjacent 

microridges along the line. 

B) Dot and box-and-whisker plot of microridge density, defined as the sum microridge length 

(μm) normalized to apical cell area (μm2), on periderm cells at the specified stage. 48hpf, n=34 

cells from 12 fish; 72hpf, n=24 cells from 10 fish; 96hpf, n=34 cells from 15 fish. P=1.87x10-9, 

one-way ANOVA followed by Tukey’s HSD test: 48-72hpf, P=3.32x10-3; 48-96hpf, P=1.17x10-9; 

72-96hpf, P=6.65x10-3. 

C) Microridge-to-microridge spacing. Top: cropped image of a 96hpf periderm cell expressing 

Lifeact-GFP. The blue bracket shows the distance between two adjacent microridges. Bottom: 

Orthogonal optical section from the above periderm cell along the dashed red line at the bottom 

edge of the XY image. M: microridge protrusions, A: apical, B: basal. Blue bracket shows the 

distance between the same microridges as above. 

D) VIsualization of microridge spacing at three developmental stages. Color coding indicates the 

distance from each point in each microridge to the nearest neighboring microridge. Colors 

correspond to the distances indicated on the bar to the left. 

E) Dot and box-and-whisker plots of the mode distance between neighboring microridges in 

periderm cells at the specified stage. 48hpf, n=34 cells from 12 fish; 72hpf, n=24 cells from 10 

fish; 96hpf, n=34 cells from 15 fish. P=0.089, one-way ANOVA. 



 

F) Dot and box-and-whisker plot of microridge spacing variability, defined as the interquartile 

range of distances between neighboring microridges in periderm cells at the specified stages. 

48hpf, n=34 cells from 12 fish; 72hpf, n=24 cells from, 10 fish; 96hpf n=34 cells from 15 fish. 

P=9.91x10-10, one-way ANOVA followed by Tukey’s HSD test: 48-72hpf, P=7.72x10-3; 48-96hpf, 

P=8.11x10-10; 72-96hpf, P=1.90x10-3. 

G) Visualization of microridge orientations at the specified stages. Microridge orientations are 

color-coded along each microridge (top); colors correspond to the color wheel on the upper left. 

Microridge alignment domains were expanded from microridge orientations (bottom), using the 

same color wheel and scale as above. See Methods for details. 

H) Dot and box-and-whisker plot of the microridge alignment index for periderm cells at the 

specified stages. 48hpf, n=34 cells from 12 fish; 72hpf, n=24 cells from 10 fish; 96hpf, n=34 

cells from 15 fish. P=2.96x10-12, one-way ANOVA followed by Tukey’s HSD test: 48-72hpf, 

P=0.121; 48-96hpf, P=4.02x10-10; 72-96hpf, P=8.79x10-7. 

I) Diagram of microridge structure and spacing. (YZ) Branched actin fills microridge protrusions, 

depicted as a lengthwise section, the apical actomyosin cortex is shown below the protrusions. 

(XZ) Microridge spacing, depicted as a cross section, is variable after microridge formation 

(48hpf), but gradually matures to a more regularly spaced pattern (96hpf). 

Scale bars: 10 μm (A) and 5 μm (C, D, and G). 

‘*’ p ≥ 0.05, ‘**’ p ≥ 0.01, and ‘***’ p ≥ 0.001. 

For box-and-whisker plots, the middle line is the median, and lower and upper ends of boxes 

are 25th and 75th percentiles, respectively. 

 



 

Figure 2. Microridge patterns mature on individual periderm cells 

A) Microridge distances, orientations, and alignment domains in two cells from 48-96hpf. 

B) Line and point plot of microridge density, defined as the sum microridge length (μm) 

normalized to apical cell area (μm2), in periderm cells over time. n=28 cells from 9 fish. 

P=5.87x10-15, one-way repeated measures ANOVA. 

C) Line and point plot of the mode distances between neighboring microridges in periderm cells 

over time. n=28 cells from 9 fish. P=4.08x10-4, one-way repeated measures ANOVA. 

D) Line and point plot of microridge spacing variability (interquartile range of distances) between 

neighboring microridges in periderm cells over time. n=28 cells from 9 fish. P=7.37x10-11, one-

way repeated measures ANOVA. 

E) Line and point plot of microridge alignment index in periderm cells over time. n=28 cells from 

9 fish. P=5.16x10-8, one-way repeated measures ANOVA. 

Scale bars: 5 μm (A). 

‘***’ p ≥ 0.001. 

 

Figure 3. Microridges dynamically rearrange 

A) Stills from time-lapse movies of 48hpf periderm cells expressing Lifeact-GFP, showing 

microridges undergoing fission or fusion. Orange arrowheads indicate fusion; blue arrowheads 

indicate fission. Images were inverted, so that high intensity fluorescence appears black and low 

intensity is white. Images are still frames from Video 2. 



 

B) Stills from time-lapse movies of 48hpf periderm cells expressing Lifeact-GFP (actin) and 

mRuby-PH-PLC (membrane), showing microridges undergoing fission or fusion. Orange 

arrowheads indicate fusion; blue arrowheads indicate fission. Images were inverted, so that high 

intensity fluorescence appears black and low intensity is white. Images are still frames from 

Video 3. 

C) Jittered dot plot of the sum of fission and fusion events in each cell, normalized to cell apical 

area, over a 9.5-minute period (events/μm⋅min) at the specified stage. Middle bar represents the 

mean. n=5 cells from 5 fish at all stages. P=1.62x10-4, one-way ANOVA followed by Tukey’s 

HSD test: 48-72hpf, P=9.75x10-4; 48-96hpf, P=2.17x10-4; 72-96hpf, P=0.629. 

D) Stacked bar plot of the proportion of fission and fusion events indicated stages. Each bar 

represents one cell. n=5 cells from 5 fish at all developmental stages. Fusion events were used 

in a Test of Equal Proportions (P=0.224) and fusion event proportion estimates were 0.501, 

0.543, and 0.488 for 48, 72, and 96hpf, respectively. 

E) Scatter plot of microridge dynamics (events/μm⋅min) over a 9.5-minute period versus the 

microridge alignment index at the start of the 9.5-minute period. n=5 cells from 5 fish at all 

developmental stages. P=1.16x10-4, Spearman’s rank correlation rho = -0.832. 

F) Stills from a  time-lapse movie of Lifeact-GFP-expressing periderm cells stretching in 

response to neighbor cell ablation in a 72hpf zebrafish. Pre-ablation image shows the cell of 

interest between the ablated cells, and images of the cell of interest immediately after ablation 

(0 min), and at 30-minute intervals after ablation. The cell stretched dramatically, but microridge 

rearrangements did not appreciably increase. Microridge rearrangements occurred at a rate of 

0.00393 events/μm⋅min over the course of the video (compare to rates in panel C). Images 



 

were inverted, so that high intensity fluorescence appears black and low intensity is white. 

Images are still frames from Video 4. 

Scale bars: 1 μm (A and B) and 10 μm (E). 

‘***’ p ≥ 0.001. 

 

Figure 4. Microridge rearrangements spatially and temporally correlate with NMII 

contraction 

A) Stills from a  time-lapse movie of 48hpf zebrafish periderm cells expressing Lifeact-mRuby 

(actin) and Myl12.1-EGFP (myosin). Microridge fission occured as a myosin contraction event 

dissipated (blue arrowheads). Microridges fused as a myosin contraction intensified (orange 

arrowheads). Merged images show the microridge protrusions (P) and apical cortex (C) of the 

above fission (blue arrowheads and borders) and fusion (orange arrowheads and borders) 

events from an orthogonal view. Single-channel images were inverted, so that high intensity 

fluorescence appears black and low intensity is white. Images are still frames from Video 5. 

B) Dot plot of the percentage of microridge fission and fusion events within 1μm of an NMII 

contraction over a 9.5-minute period. Graph compares unrotated channels to data analyzed 

after rotating the NMII fluorescence channel 90° relative to the actin fluorescence channel. Grey 

lines connect the unrotated samples to their rotated counterparts. n=6 cells from 6 fish, 

including 3 cells from 3 fish at 24hpf and 3 cells from 3 fish at 48hpf. P=2.27x10-4, paired t-test. 

C) Dot plot of the percentage of microridge fission and fusion events within 1μm of an NMII 

contraction event over a 9.5-minute period. Graph compares contraction-associated fusion 

events to contraction-associated fission events in the same cells. Grey lines connect points from 



 

the same cell. n=6 cells from 6 fish, including 3 cells from 3 fish at 24hpf and 3 cells from 3 fish 

at 48hpf. P=0.778, paired t-test. 

D) Overlap frames from 9.5-minute time-lapse movies of 49hpf zebrafish periderm cells 

expressing Lifeact-GFP after 1hr exposure to 1% DMSO (vehicle control) or 50μM blebbistatin. 

Circles indicate the locations where fission (blue) and fusion (orange) events were detected 

over the course of the 9.5-minute movies (frames were collected at 30 second intervals). 

Overlapped images are from Video 6. 

E) Jittered dot plot of the sum of fission and fusion events in each cell, normalized to cell apical 

area, over a 9.5-minute period (events/μm⋅min) in cells after 1-hour exposure to 1% DMSO 

(vehicle control) or 50μM blebbistatin. n=5 cells from 5 fish for control and treatment. P=0.033, 

unpaired t-test. 

Scale bars: 1μm (A) and 5μm (D). 

‘*’ p ≥ 0.05 and ‘***’ p ≥ 0.001. 

Bars in dot plots represent the mean. 

 

Figure 5. Inhibiting NMII changes microridge patterns 

A) Representative images of periderm cells expressing Lifeact-GFP on 72hpf zebrafish after 24-

hour exposure to the specified concentration of blebbistatin or vehicle control (DMSO). Images 

were inverted, so that high intensity fluorescence appears black and low intensity is white. 

B) Visualizations of microridge distances, orientations, and alignment domains from periderm 

cells at 72hpf, after 24-hour exposure to the specified concentration of blebbistatin or vehicle 



 

control (DMSO). 

C) Violin and box-and-whisker plot of projection length for periderm cells in 72hpf zebrafish, 

after 24-hour exposure to the specified concentration of blebbistatin or vehicle control (DMSO). 

DMSO, n=26 cells from 9 fish; 5μM blebbistatin, n=27 cells from 9 fish; 50μM blebbistatin, n=29 

cells from 9 fish. P<2.2x10-16, Kruskal-Wallis test followed by Dunn test with Benjamini-

Hochberg p-value adjustment: DMSO-5μM blebbistatin, P=0.173; DMSO-50μM blebbistatin, 

P=2.51x10-13; 5μM blebbistatin-50μM blebbistatin, P=3.79x10-17. 

D) Dot and box-and-whisker plot of microridge density, defined as the sum microridge length 

(μm) normalized to apical cell area (μm2), for periderm cells in 72hpf zebrafish after 24-hour 

exposure to the specified concentration of blebbistatin or vehicle control (DMSO). DMSO, n=26 

cells from 9 fish; 5μM blebbistatin, n=27 cells from 9 fish; 50μM blebbistatin, n=29 cells from 9 

fish. P=2.80x10-14, one-way ANOVA followed by Tukey’s HSD test: DMSO-5μM blebbistatin, 

P=3.07x10-3; DMSO-50μM blebbistatin, P<2x10-16; 5μM blebbistatin-50μM blebbistatin, 

P=7.70x10-8. 

E)  Dot and box-and-whisker plot of the mode distance between neighboring microridges in 

periderm cells in 72hpf zebrafish after 24-hour exposure to the specified concentration of 

blebbistatin or vehicle control (DMSO). DMSO, n=26 cells from 9 fish; 5μM blebbistatin, n=27 

cells from 9 fish; 50μM blebbistatin, n=29 cells from 9 fish. P=0.318, one-way ANOVA. 

F) Dot and box-and-whisker plot of the alignment index on periderm cells in 72hpf zebrafish 

after 24-hour exposure to the specified concentration of blebbistatin or vehicle control (DMSO). 

DMSO, n=26 cells from 9 fish; 5μM blebbistatin, n=27 cells from 9 fish; 50μM blebbistatin, n=29 

cells from 9 fish. P=4.56x10-7, one-way ANOVA followed by Tukey’s HSD test: DMSO-5μM 

blebbistatin, P=1.11x10-5; DMSO-50μM blebbistatin, P=2.38x10-6; 5μM blebbistatin-50μM 

blebbistatin, P=0.951. 



 

Scale bars: 10uM (A) and 5μm (B). 

‘**’ p ≥ 0.01 and ‘***’ p ≥ 0.001. 

For box-and-whisker plots, the middle line is the median, and lower and upper ends of boxes 

are 25th and 75th percentiles, respectively. 

 

Figure 6. Short-term inhibition of NMII contractility alters microridge patterns in 

individual cells 

A) Representative visualizations of microridge distances, orientations, and alignment domains in 

periderm cells expressing Lifeact-GFP before (48hpf, 0 hr) and after (49hpf, 1hr) 1-hour 

treatment with 50μM blebbistatin or vehicle (DMSO). 

B) Line plot of microridge density, defined as the sum microridge length (μm) normalized to 

apical cell area (μm2), from periderm cells before (48hpf, 0 hr) and after (49hpf, 1hr) 1-hour 

treatment with 50μM blebbistatin or vehicle control (DMSO). DMSO, n=22 cells from 4 fish; 

50μM blebbistatin, n=25 cells from 4 fish. P=4.09x10-11, one-way repeated measures ANOVA. 

C) Line plot of microridge spacing mode from periderm cells before (48hpf, 0 hr) and after 

(49hpf, 1hr) 1-hour treatment with 50μM blebbistatin or vehicle control (DMSO). DMSO, n=22 

cells from 4 fish; 50μM blebbistatin, n=25 cells from 4 fish. P=7.76x10-6, one-way repeated 

measures ANOVA. 

D) Line plot of microridge spacing variability (interquartile range of distances) between 

neighboring microridges in periderm cells before (48hpf, 0 hr) and after (49hpf, 1hr) 1-hour 

treatment with 50μM blebbistatin or vehicle control (DMSO). DMSO, n=22 cells from 4 fish; 

50μM blebbistatin, n=25 cells from 4 fish. P<2x10-16, one-way repeated measures ANOVA. 



 

E) Line plot of the alignment index in periderm cells before (48hpf, 0 hr) and after (49hpf, 1hr) 1-

hour treatment with 50μM blebbistatin or vehicle control (DMSO). Note that control treatment 

with DMSO decreased alignment, likely reflecting disruption of the pattern by the mounting and 

unmounting procedure required for this experiment, but treatment with blebbistatin increased 

alignment, emphasizing the role of NMII in this process.  DMSO, n=22 cells from 4 fish; 50μM 

blebbistatin, n=25 cells from 4 fish. P=1.02x10-8, one-way repeated measures ANOVA. 

Scale bars: 5μm (A). 

‘***’ p ≥ 0.001. 

 

Figure 7. NMII minifilaments connect adjacent pegs and microridges 

A) Airyscan image of a 16hpf zebrafish periderm cell expressing fluorescent reporters for actin 

(Lifeact-Ruby) and NMII light chain (Myl12.1-GFP). Pairs of green puncta (yellow brackets) 

appear in the cortex between adjacent pegs (magenta puncta). Below is an orthogonal view of 

the peg protrusions (P) and apical cortex (C) along the dashed white line in the upper image. 

B) Histogram of distances between the intensity maxima of presumptive NMII minifilaments.  

Inset is a representative image showing GFP signal at opposing ends of a presumptive NMII 

minifilament in a periderm cell expressing reporters for actin (Lifeact-Ruby) and NMII light chain 

(Myl12.1-GFP). n=49 minifilaments from 4 cells on 4 fish.  

C) Airyscan image of a 24hpf zebrafish periderm cell expressing fluorescent reporters for NMII 

heavy chain (NMIIHC, Myh9a-mCherry) and NMII light chain (NMIILC, Myl12.1-GFP). NMIIHC 

channel was pseudo-colored blue. Yellow brackets show examples of GFP-mCherry-GFP 

fluorescence patterns. Below is an orthogonal view of apical cortex (C) along the dashed white 



 

line in the upper image. 

D) Diagram of NMII fluorescent protein fusion design and expected NMII minifilament 

fluorescence pattern. The upper graphic shows an NMII macromolecule, composed of two 

heavy chains, two essential light chains, and two regulatory light chains. GFP was fused to the 

regulatory light chains (Myl12.1-GFP), while mCherry was fused to the tail of the heavy chains 

(Myh9a-mCherry; represented in blue). The middle graphic shows the expected fluorescence 

pattern when multiple NMII macromolecules, labelled like the one in the upper graphic, 

assemble into an NMII minifilament. The lower Airyscan image shows an NMII minifilament in 

the cortex of a 24hpf zebrafish periderm cell expressing Myl12.1-GFP and Myh9a-mCherry. 

E) Airyscan images showing NMII minifilaments connecting adjacent microridges side-to-side 

and end-to-end during (24hpf) and after (48hpf) microridge formation in periderm cells 

expressing reporters for actin (Lifeact-Ruby) and NMII light chain (Myl12.1-GFP). The 

oversaturated images reveal actin filaments in the cortex. The panels to the right show actin (C), 

NMII (N) and merged channels (M) in an orthogonal section. Dotted lines track along NMII 

minifilament “bridges” and F-actin in the apical cortex.  

Scale bars: 1 μm (A, C, and E) and 500 nm (B and D) 

 

Figure 8. NMII minifilaments dynamically connect pegs and organize microridge 

rearrangements 

A) Airyscan time-lapse images of NMII minifilaments dynamically connecting pegs as they 

emerge in the cortex of a periderm cell expressing fluorescent reporters for actin (Lifeact-

mRuby) and NMII (Myl12.1-GFP). Dotted lines track along NMII minifilament “bridges”. Images 

are still frames from Video 7. 



 

B) Airyscan time-lapse images of microridge rearrangements (white arrowheads) in periderm 

cells expressing fluorescent reporters for actin (Lifeact-mRuby) and NMII (Myl12.1-GFP). In the 

upper panels, an NMII minifilament connects the ends of adjacent microridges, fusing them 

together. In the lower panels, NMII minifilaments oriented perpendicular to a microridge appear 

to sever it. Images are still frames from Video 7. 

C) Stills from an airyscan time-lapse movie showing the spacing between microridges narrowing 

(first 3 minutes; top) and then widening (last 3 minutes; bottom) in a periderm cell expressing 

fluorescent reporters for actin (Lifeact-mRuby) and NMII (Myl12.1-GFP). Top rows show 

Airyscan images; bottom rows show color-coded distances. The upper two rows show NMII 

minifilaments connecting adjacent microridges and apparently pulling them together. The lower 

two rows show the NMII minifilament bridge between microridges dissipating as the adjacent 

microridges move further apart. Dotted lines highlight narrowing and widening regions. Distance 

map colors correspond to color bars on the left. Images are still frames from Video 7. 

Scale bars: 1μm (A and B). 

 

Figure 9. Model for microridge maturation and minifilament-mediated rearrangements 

Top: The nematic order of microridge patterns increases as rearrangements decrease in 

frequency. 

Bottom: The orientation of NMII minifilaments determines the outcome of rearrangement events 

and regulates spacing (see Discussion). 

  



 

SUPPLEMENTAL FIGURE LEGENDS 

Fig S1. Additional quantification of morphological changes in maturing microridges  

A) Violin and box-and-whisker plot of protrusion length for periderm cells at the specified stages. 

48hpf, n=34 cells from 12 fish; 72hpf, n=24 cells from 10 fish; 96hpf, n=34 cells from 15 fish. 

P<2.2x10-16, Kruskal-Wallis test followed by Dunn test with Benjamini-Hochberg p-value 

adjustment: 48-72hpf, P=1.36x10-14; 48-96hpf, P=2.67x10-59; 72-96hpf, P=6.08x10-14. 

B) Dot and box-and-whisker plot of average protrusion length on periderm cells at the specified 

stages. 48hpf, n=34 cells from 12 fish; 72hpf, n=24 cells from 10 fish; 96hpf, n=34 cells from 15 

fish. P=1.81x10-10,  Kruskal-Wallis test followed by Dunn test with Benjamini-Hochberg p-value 

adjustment: 48-72hpf, P=0.019; 48-96hpf, P=8.60x10-11; 72-96hpf, P=3.05x10-4. 

C) Box-and-whisker plot of protrusion number distributed among pegs (<0.75μm), short 

microridges (0.75-5μm), and long microridges (>5μm) on periderm cells at the specified stages. 

48hpf, n=34 cells from 12 fish; 72hpf, n=24 cells from 10 fish; 96hpf, n=34 cells from 15 fish.  

Two-way ANOVA with interaction: hpf, P=3.12x10-12; protrusion type, P=4.84x10-3; hpf-

protrusion type interaction, P=3.03x10-5. 

D) Dot and box-and-whisker plot of periderm cell apical area at the specified stages. 48hpf, 

n=34 cells from 12 fish; 72hpf, n=24 cells from 10 fish; 96hpf, n=34 cells from 15 fish. P=0.011,  

Kruskal-Wallis test followed by Dunn test with Benjamini-Hochberg p-value adjustment: 48-

72hpf, P=0.722; 48-96hpf, P=0.014; 72-96hpf, P=0.041. 

E) Dot and box-and-whisker plot of microridge spacing mean for periderm cells at the specified 

stages. 48hpf, n=34 cells from 12 fish; 72hpf, n=24 cells from 10 fish; 96hpf, n=34 cells from 15 

fish. P=0.308,  one-way ANOVA. 

F) Dot and box-and-whisker plot of microridge spacing median for periderm cells at the specified 



 

stages. 48hpf, n=34 cells from 12 fish; 72hpf, n=24 cells from 10 fish; 96hpf, n=34 cells from 15 

fish. P=0.569,  one-way ANOVA. 

‘*’ p ≥ 0.05 and ‘***’ p ≥ 0.001. 

For box-and-whisker plots, the middle line is the median, and lower and upper ends of boxes 

are 25th and 75th percentiles, respectively. 

 

Fig S2. Additional images of NMII minifilament association with protrusions suring 

rearrangement events 

A) NMII minifilaments associate with protrusions. Airyscan images of a 16hpf zebrafish periderm 

cell expressing fluorescent reporters for actin (Lifeact-Ruby) and NMII light chain (Myl12.1-

GFP). NMII minifilaments (green doublets) appear in the cortex near adjacent pegs (magenta 

puncta) in the aligned channels. NMII minifilaments were associated with pegs less frequently 

when the NMII fluorescence channel was rotated 90° relative to the actin channel. 

B) Dot plot of the sum of NMII intensity within 0.25μm of protrusions on 16hpf periderm cells 

expressing fluorescent reporters for actin (Lifeact-Ruby) and NMII light chain (Myl12.1-GFP).  

Images with unrotated channels were compared to the same images with the NMII fluorescence 

channel rotated 90° relative to the actin channel as a control. n=7 cells from 3 fish. P=3.86x10-5, 

paired t-test. 

C) Stills from airyscan time-lapse movies of microridge fusion (white arrowheads) events in 

periderm cells expressing fluorescent reporters for actin (Lifeact-mRuby) and NMII (Myl12.1-

GFP). Four different fusion events in different microridges are shown. 

D) Stills from airyscan time-lapse movies of microridge fission (white arrowheads) events in 



 

periderm cells expressing fluorescent reporters for actin (Lifeact-mRuby) and NMII (Myl12.1-

GFP). Four different fission events in different microridges are shown. 

E) Stills from an airyscan time-lapse movie of the spacing between adjacent microridges 

narrowing and then subsequently widening in a periderm cell expressing fluorescent reporters 

for actin (Lifeact-mRuby) and NMII (Myl12.1-GFP). Dotted lines highlight narrowing and 

widening regions. 

Scale bars: 1μm (A, C, D and E).  



 

VIDEO LEGENDS 

Video 1. Microridge fusion and fission diminish as microridge patterns mature 

9.5-minute time-lapse videos with 30-second intervals of periderm cells expressing Lifeact-GFP 

in zebrafish at the indicated developmental stage. Microridge fusion and fission attenuate as 

microridges become longer and more aligned at each stage. Orange circles show locations of 

microridge fusions. Blue circles show locations of microridge fissions. Scale bar: 10μm. 

 

Video 2. Microridges fuse and fission 

4.5-minute time-lapse videos with 30-second intervals of periderm cells expressing Lifeact-GFP 

in 48hpf zebrafish.  White arrowheads show locations of microridge fusion and fission events. 

Scale bar: 1μm. 

 

Video 3. Microridge fusion and fission reflect fusion and fission of the plasma membrane 

9.5-minute time-lapse video with 30-second intervals of periderm cells expressing fluorescent 

reporters for actin (Lifeact-GFP) and membrane (mRuby-PH-PLC) on 48hpf zebrafish. 

Microridge fusion (yellow arrowhead) and fission (white arrowhead) in the actin channel are 

mimicked by fission and fusion of projections in the membrane channel. Time-lapse frames are 

sum projection images. Scale bar: 1μm. 

 

Video 4. Rapid cell shape changes do not induce microridge fusion and fission 

60-minute time-lapse video with 1-minute intervals of periderm cells expressing Lifeact-GFP on 



 

72hpf zebrafish. Time-lapse begins immediately after laser ablation of periderm cells on either 

side of the cell of interest. The cell of interest rapidly elongates between the two wounds, but 

does not increase fusion and fission events. Orange circles show locations of microridge 

fusions. Blue circles show locations of microridge fissions. Microridge rearrangements occurred 

at a rate of 0.00393 events/μm⋅min over the course of the video. Scale bar: 10μm. 

 

Video 5. NMII contractions correlate with microridge fusion and fission 

9.5-minute time-lapse video with 30-second intervals of periderm cells expressing fluorescent 

reporters for actin (Lifeact-mRuby) and NMII (Myl12.1-EGFP) on 48hpf zebrafish. Microridges 

fuse near sites of intensifying myosin fluorescence signal (yellow arrowheads) and fission near 

sites of diminishing myosin fluorescence signal (white arrowhead). Scale bar: 1μm. 

 

Video 6. Short-term NMII inhibition reduces microridge fusion and fission 

9.5-minute time-lapse video with 30-second intervals of periderm cells expressing Lifeact-GFP 

on 49hpf zebrafish after 1-hour treatment with 1% DMSO or 50μM blebbistatin. Microridge 

fusion and fission decrease in periderm cells after 1-hour treatment with blebbistatin. Orange 

circles show locations of microridge fusions. Blue circles show locations of microridge fissions. 

Scale bar: 5μm. 

 

Video 7. NMII minifilaments coordinate peg dynamics and microridge fusion, fission, and 

spacing 



 

9-minute time-lapse videos with 1-minute intervals of periderm cells expressing fluorescent 

reporters for actin (Lifeact-mRuby) and NMII (Myl12.1-EGFP). NMII minifilaments appear as two 

green puncta. Different NMII-mediated events indicated by title cards. “Bridges” of one or two 

NMII minifilaments attach to pegs as they appear, and occasionally pull them toward one 

another. NMII minifilaments connect two microridge ends and fuse them into a longer 

microridge.  NMII minifilaments oriented perpendicular to a microridge in the x-y plane sever a 

microridge.  Finally, NMII minifilament “bridges” connecting two adjacent microridges contract to 

pull the microridges closer together, and allow microridges to drift further apart as they 

disappear. Scale bar: 1μm.  
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