6 research outputs found

    SHADE with Iterative Local Search for Large-Scale Global Optimization

    Get PDF
    Global optimization is a very important topic in research due to its wide applications in many real-world problems in science and engineering. Among optimization problems, dimensionality is one of the most crucial issues that increases the difficulty of the optimization process. Thus, Large-Scale Global Optimization, optimization with a great number of variables, arises as a field that is getting an increasing interest. In this paper, we propose a new hybrid algorithm especially designed to tackle this type of optimization problems. The proposal combines, in a iterative way, a modern Differential Evolution algorithm with one local search method chosen from a set of different search methods. The selection of the local search method is dynamic and takes into account the improvement obtained by each of them in the previous intensification phase, to identify the most adequate in each case for the problem. Experiments are carried out using the CEC’2013 Large-Scale Global Optimization benchmark, and the proposal is compared with other state-of-the-art algorithms, showing that the synergy among the different components of our proposal leads to better and more robust results than more complex algorithms. In particular, it improves the results of the current winner of previous Large-Scale Global Optimization competitions, Multiple Offspring Sampling, MOS, obtaining very good results, especially in the most difficult problems

    Bio-inspired computation: where we stand and what's next

    Get PDF
    In recent years, the research community has witnessed an explosion of literature dealing with the adaptation of behavioral patterns and social phenomena observed in nature towards efficiently solving complex computational tasks. This trend has been especially dramatic in what relates to optimization problems, mainly due to the unprecedented complexity of problem instances, arising from a diverse spectrum of domains such as transportation, logistics, energy, climate, social networks, health and industry 4.0, among many others. Notwithstanding this upsurge of activity, research in this vibrant topic should be steered towards certain areas that, despite their eventual value and impact on the field of bio-inspired computation, still remain insufficiently explored to date. The main purpose of this paper is to outline the state of the art and to identify open challenges concerning the most relevant areas within bio-inspired optimization. An analysis and discussion are also carried out over the general trajectory followed in recent years by the community working in this field, thereby highlighting the need for reaching a consensus and joining forces towards achieving valuable insights into the understanding of this family of optimization techniques

    Bio-inspired computation: where we stand and what's next

    Get PDF
    In recent years, the research community has witnessed an explosion of literature dealing with the adaptation of behavioral patterns and social phenomena observed in nature towards efficiently solving complex computational tasks. This trend has been especially dramatic in what relates to optimization problems, mainly due to the unprecedented complexity of problem instances, arising from a diverse spectrum of domains such as transportation, logistics, energy, climate, social networks, health and industry 4.0, among many others. Notwithstanding this upsurge of activity, research in this vibrant topic should be steered towards certain areas that, despite their eventual value and impact on the field of bio-inspired computation, still remain insufficiently explored to date. The main purpose of this paper is to outline the state of the art and to identify open challenges concerning the most relevant areas within bio-inspired optimization. An analysis and discussion are also carried out over the general trajectory followed in recent years by the community working in this field, thereby highlighting the need for reaching a consensus and joining forces towards achieving valuable insights into the understanding of this family of optimization techniques
    corecore