115 research outputs found

    Anisotropic Inflation and the Origin of Four Large Dimensions

    Get PDF
    In the context of (4+d)-dimensional general relativity, we propose an inflationary scenario wherein 3 spatial dimensions grow large, while d extra dimensions remain small. Our model requires that a self-interacting d-form acquire a vacuum expectation value along the extra dimensions. This causes 3 spatial dimensions to inflate, whilst keeping the size of the extra dimensions nearly constant. We do not require an additional stabilization mechanism for the radion, as stable solutions exist for flat, and for negatively curved compact extra dimensions. From a four-dimensional perspective, the radion does not couple to the inflaton; and, the small amplitude of the CMB temperature anisotropies arises from an exponential suppression of fluctuations, due to the higher-dimensional origin of the inflaton. The mechanism triggering the end of inflation is responsible, both, for heating the universe, and for avoiding violations of the equivalence principle due to coupling between the radion and matter.Comment: 24 pages, 2 figures; uses RevTeX4. v2: Minor changes and added references. v3: Improved discussion of slow-rol

    Could dark energy be vector-like?

    Get PDF
    In this paper I explore whether a vector field can be the origin of the present stage of cosmic acceleration. In order to avoid violations of isotropy, the vector has be part of a ``cosmic triad'', that is, a set of three identical vectors pointing in mutually orthogonal spatial directions. A triad is indeed able to drive a stage of late accelerated expansion in the universe, and there exist tracking attractors that render cosmic evolution insensitive to initial conditions. However, as in most other models, the onset of cosmic acceleration is determined by a parameter that has to be tuned to reproduce current observations. The triad equation of state can be sufficiently close to minus one today, and for tachyonic models it might be even less than that. I briefly analyze linear cosmological perturbation theory in the presence of a triad. It turns out that the existence of non-vanishing spatial vectors invalidates the decomposition theorem, i.e. scalar, vector and tensor perturbations do not decouple from each other. In a simplified case it is possible to analytically study the stability of the triad along the different cosmological attractors. The triad is classically stable during inflation, radiation and matter domination, but it is unstable during (late-time) cosmic acceleration. I argue that this instability is not likely to have a significant impact at present.Comment: 28 pages, 6 figures. Uses RevTeX4. v2: Discussion about relation to phantoms added and additional references cite

    One-loop f(R) gravity in de Sitter universe

    Full text link
    Motivated by the dark energy issue, the one-loop quantization approach for a family of relativistic cosmological theories is discussed in some detail. Specifically, general f(R)f(R) gravity at the one-loop level in a de Sitter universe is investigated, extending a similar program developed for the case of pure Einstein gravity. Using generalized zeta regularization, the one-loop effective action is explicitly obtained off-shell, what allows to study in detail the possibility of (de)stabilization of the de Sitter background by quantum effects. The one-loop effective action maybe useful also for the study of constant curvature black hole nucleation rate and it provides the plausible way of resolving the cosmological constant problem.Comment: 25 pages, Latex file. Discussion enlarged, new references added. Version accepted in JCA

    Characterization of Human Osteoarthritic Cartilage Using Optical and Magnetic Resonance Imaging

    Get PDF
    Purpose: Osteoarthritis (OA) is a degenerative disease starting with key molecular events that ultimately lead to the breakdown of the cartilage. The purpose of this study is to use two imaging methods that are sensitive to molecular and macromolecular changes in OA to better characterize the disease process in human osteoarthritic cartilage. Procedures: Human femoral condyles were collected from patients diagnosed with severe OA during total knee replacement surgeries. T1ρ and T2 magnetic resonance measurements were obtained using a 3-Tesla whole body scanner to assess macromolecular changes in the damaged cartilage matrix. Optical imaging was performed on specimens treated with MMPSense 680 to assess the matrix metalloproteinase (MMP) activity. A linear regression model was used to assess the correlation of MMP optical data with T 1ρ magnetic resonance (MR) measurements. Slices from a representative specimen were removed from regions with high and low optical signals for subsequent histological analysis. Results: All specimens exhibit high T1ρ and T2 measurements in the range of 48–75 ms and 36– 69 ms, respectively. They also show intense photon signals (0.376 to 7.89×10 −4 cm 2) from th

    Meniscal T1rho and T2 measured with 3.0T MRI increases directly after running a marathon

    Get PDF
    PURPOSE: To prospectively evaluate changes in T1rho and T2 relaxation time in the meniscus using 3.0 T MRI in asymptomatic knees of marathon runners and to compare these findings with those of age-matched healthy subjects. MATERIAL AND METHODS: Thirteen marathon runners underwent 3.0 T MRI including T1rho and T2 mapping sequences before, 48-72 h after, and 3 months after competition. Ten controls were examined at baseline and after 3 months. All images were analyzed by two musculoskeletal radiologists identifying and grading cartilage, meniscal, ligamentous. and other knee abnormalities with WORMS scores. Meniscal segmentation was performed to generate T1rho and T2 maps in six compartments. RESULTS: No differences in morphological knee abnormalities were found before and after the marathon. However, all marathon runners showed a significant increase in T1rho and T2 values after competition in all meniscus compartments (p < 0.0001), which may indicate changes in the biochemical composition of meniscal tissue. While T2 values decreased after 3 months T1rho values remained at a high level, indicating persisting changes in the meniscal matrix composition after a marathon. CONCLUSION: T2 values in menisci have the potential to be used as biomarkers for identifying reversible meniscus matrix changes indicating potential tissue damage. T1rho values need further study, but may be a valuable marker for diagnosing early, degenerative changes in the menisci following exercise

    Neoadjuvant chemotherapy in breast cancer: early response prediction with quantitative MR imaging and spectroscopy.

    Get PDF
    A prospective study was undertaken in women undergoing neoadjuvant chemotherapy for locally advanced breast cancer in order to determine the ability of quantitative magnetic resonance imaging (MRI) and proton spectroscopy (MRS) to predict ultimate tumour response (percentage decrease in volume) or to detect early response. Magnetic resonance imaging and MRS were carried out before treatment and after the second of six treatment cycles. Pharmacokinetic parameters were derived from T1-weighted dynamic contrast-enhanced MRI, water apparent diffusion coefficient (ADC) was measured, and tissue water:fat peak area ratios and water T2 were measured using unsuppressed one-dimensional proton spectroscopic imaging (30 and 135 ms echo times). Pharmacokinetic parameters and ADC did not detect early response; however, early changes in water:fat ratios and water T2 (after cycle two) demonstrated substantial prognostic efficacy. Larger decreases in water T2 accurately predicted final volume response in 69% of cases (11/16) while maintaining 100% specificity and positive predictive value. Small/absent decreases in water:fat ratios accurately predicted final volume non-response in 50% of cases (3/6) while maintaining 100% sensitivity and negative predictive value. This level of accuracy might permit clinical application where early, accurate prediction of non-response would permit an early change to second-line treatment, thus sparing patients unnecessary toxicity, psychological morbidity and delay of initiation of effective treatment

    Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition)

    Get PDF
    In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. For example, a key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process versus those that measure fl ux through the autophagy pathway (i.e., the complete process including the amount and rate of cargo sequestered and degraded). In particular, a block in macroautophagy that results in autophagosome accumulation must be differentiated from stimuli that increase autophagic activity, defi ned as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (inmost higher eukaryotes and some protists such as Dictyostelium ) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the fi eld understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. It is worth emphasizing here that lysosomal digestion is a stage of autophagy and evaluating its competence is a crucial part of the evaluation of autophagic flux, or complete autophagy. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. Along these lines, because of the potential for pleiotropic effects due to blocking autophagy through genetic manipulation it is imperative to delete or knock down more than one autophagy-related gene. In addition, some individual Atg proteins, or groups of proteins, are involved in other cellular pathways so not all Atg proteins can be used as a specific marker for an autophagic process. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field

    31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two

    Get PDF
    Background The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd. Methods We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background. Results First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001). Conclusions In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival
    corecore