50 research outputs found

    Optical Propagation and Communication

    Get PDF
    Contains summary of research and reports on four research projects.National Science Foundation (Grant ECS81-20637)U.S. Navy - Office of Naval Research (Contract N00014-81-K-0662)Maryland Procurement Office (Contract MDA904-84-C-6037)U.S. Army Research Office - Durham (Contract DAAG29-80-K-0022)U.S. Army Research Office - Durham (Contract DAAG29-84-K-0095)U.S. Navy - Office of Naval Research (Contract N00014-80-C-0941

    Optical Propagation and Communication

    Get PDF
    Contains reports on four research projects.National Science Foundation (Grant ECS81-20637)U.S. Navy - Office of Naval Research (Contract N00014-81-K-0662)U.S. Army Research Office - Durham (Contract DAAG29-80-K-0022)U.S. Navy - Office of Naval Research (Contract N00014-80-C-0941

    Involvement of Bruton's Tyrosine Kinase in FcεRI-dependent Mast Cell Degranulation and Cytokine Production

    Get PDF
    We investigated the role of Bruton's tyrosine kinase (Btk) in FcεRI-dependent activation of mouse mast cells, using xid and btk null mutant mice. Unlike B cell development, mast cell development is apparently normal in these btk mutant mice. However, mast cells derived from these mice exhibited significant abnormalities in FcεRI-dependent function. xid mice primed with anti-dinitrophenyl monoclonal IgE antibody exhibited mildly diminished early-phase and severely blunted late-phase anaphylactic reactions in response to antigen challenge in vivo. Consistent with this finding, cultured mast cells derived from the bone marrow cells of xid or btk null mice exhibited mild impairments in degranulation, and more profound defects in the production of several cytokines, upon FcεRI cross-linking. Moreover, the transcriptional activities of these cytokine genes were severely reduced in FcεRI-stimulated btk mutant mast cells. The specificity of these effects of btk mutations was confirmed by the improvement in the ability of btk mutant mast cells to degranulate and to secrete cytokines after the retroviral transfer of wild-type btk cDNA, but not of vector or kinase-dead btk cDNA. Retroviral transfer of Emt (= Itk/Tsk), Btk's closest relative, also partially improved the ability of btk mutant mast cells to secrete mediators. Taken together, these results demonstrate an important role for Btk in the full expression of FcεRI signal transduction in mast cells

    Optical Propagation and Communication

    Get PDF
    Contains research summary and reports on four research projects.National Science Foundation (Grant ECS81-20637)National Science Foundation (Grant ECS85-09143)Maryland Procurement Office (Contract MDA904-84-C-6037)National Science Foundation (Grant ECS84-15580)U.S. Army Research Office - Durham (Contract DAAG29-84-K-0095)U.S. Navy - Office of Naval Research (Contract NO0014-80-C-0941

    Optical Propagation and Communication

    Get PDF
    Contains research objectives and reports on four research projects.National Science Foundation (Grant ECS 85-09143)Maryland Procurement Office (Contract MDA 904-84-C-6037)National Science Foundation (Grant ECS 84-15580)U.S. Army Research Office - Durham (Contract DAAG29-84-K-0095)U.S. Navy - Office of Naval Research (Contract N00014-80-C-0941

    Optical Propagation and Communication

    Get PDF
    Contains research objectives and reports on five research projects.National Science Foundation (Grant ECS81-20637)U.S. Army Research Office - Durham (Contract DAAG29-80-K-0022)U.S. Navy - Office of Naval Research (Contract N00014-81-K-0662)U.S. Navy - Office of Naval Research (Contract N00014-80-C-0941

    Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition)

    Get PDF
    In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. For example, a key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process versus those that measure fl ux through the autophagy pathway (i.e., the complete process including the amount and rate of cargo sequestered and degraded). In particular, a block in macroautophagy that results in autophagosome accumulation must be differentiated from stimuli that increase autophagic activity, defi ned as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (inmost higher eukaryotes and some protists such as Dictyostelium ) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the fi eld understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. It is worth emphasizing here that lysosomal digestion is a stage of autophagy and evaluating its competence is a crucial part of the evaluation of autophagic flux, or complete autophagy. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. Along these lines, because of the potential for pleiotropic effects due to blocking autophagy through genetic manipulation it is imperative to delete or knock down more than one autophagy-related gene. In addition, some individual Atg proteins, or groups of proteins, are involved in other cellular pathways so not all Atg proteins can be used as a specific marker for an autophagic process. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)

    Get PDF
    corecore