215 research outputs found

    Genetic relationships and evolution in Cucurbita pepo (pumpkin, squash, gourd) as revealed by simple sequence repeat polymorphisms

    Get PDF
    Genetic relationships among 104 accessions of Cucurbita pepo were assessed from polymorphisms in 134 SSR (microsatellite) and four SCAR loci, yielding a total of 418 alleles, distributed among all 20 linkage groups. Genetic distance values were calculated, a dendrogram constructed, and principal coordinate analyses conducted. The results showed 100 of the accessions as distributed among three clusters representing each of the recognized subspecies, pepo, texana, and fraterna. The remaining four accessions, all having very small, round, striped fruits, assumed central positions between the two cultivated subspecies, pepo and texana, suggesting that they are relicts of undescribed wild ancestors of the two domesticated subspecies. In both, subsp. texana and subsp. pepo, accessions belonging to the same cultivar-group (fruit shape) associated with one another. Within subsp. pepo, accessions grown for their seeds or that are generalists, used for both seed and fruit consumption, assumed central positions. Specialized accessions, grown exclusively for consumption of their young fruits, or their mature fruit flesh, or seed oil extraction, tended to assume outlying positions, and the different specializations radiated outward from the center in different directions. Accessions of the longest-fruited cultivar-group, Cocozelle, radiated bidirectionally, indicating independent selection events for long fruits in subsp. pepo probably driven by a common desire to consume the young fruits. Among the accessions tested, there was no evidence for crossing between subspecies after domestication

    Partial sequencing of the bottle gourd genome reveals markers useful for phylogenetic analysis and breeding

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Bottle gourd [<it>Lagenaria siceraria </it>(Mol.) Standl.] is an important cucurbit crop worldwide. Archaeological research indicates that bottle gourd was domesticated more than 10,000 years ago, making it one of the earliest plants cultivated by man. In spite of its widespread importance and long history of cultivation almost nothing has been known about the genome of this species thus far.</p> <p>Results</p> <p>We report here the partial sequencing of bottle gourd genome using the 454 GS-FLX Titanium sequencing platform. A total of 150,253 sequence reads, which were assembled into 3,994 contigs and 82,522 singletons were generated. The total length of the non-redundant singletons/assemblies is 32 Mb, theoretically covering ~ 10% of the bottle gourd genome. Functional annotation of the sequences revealed a broad range of functional types, covering all the three top-level ontologies. Comparison of the gene sequences between bottle gourd and the model cucurbit cucumber (<it>Cucumis sativus</it>) revealed a 90% sequence similarity on average. Using the sequence information, 4395 microsatellite-containing sequences were identified and 400 SSR markers were developed, of which 94% amplified bands of anticipated sizes. Transferability of these markers to four other cucurbit species showed obvious decline with increasing phylogenetic distance. From analyzing polymorphisms of a subset of 14 SSR markers assayed on 44 representative China bottle gourd varieties/landraces, a principal coordinates (PCo) analysis output and a UPGMA-based dendrogram were constructed. Bottle gourd accessions tended to group by fruit shape rather than geographic origin, although in certain subclades the lines from the same or close origin did tend to cluster.</p> <p>Conclusions</p> <p>This work provides an initial basis for genome characterization, gene isolation and comparative genomics analysis in bottle gourd. The SSR markers developed would facilitate marker assisted breeding schemes for efficient introduction of desired traits.</p

    De novo assembly of the zucchini genome reveals a whole‐genome duplication associated with the origin of the Cucurbita genus

    Get PDF
    The Cucurbita genus (squashes, pumpkins and gourds) includes important domesticated species such as C. pepo, C. maxima and C. moschata. In this study, we present a high-quality draft of the zucchini (C. pepo) genome. The assembly has a size of 263 Mb, a scaffold N50 of 1.8 Mb and 34 240 gene models. It includes 92% of the conserved BUSCO core gene set, and it is estimated to cover 93.0% of the genome. The genome is organized in 20 pseudomolecules that represent 81.4% of the assembly, and it is integrated with a genetic map of 7718 SNPs. Despite the small genome size, three independent lines of evidence support that the C. pepo genome is the result of a whole-genome duplication: the topology of the gene family phylogenies, the karyotype organization and the distribution of 4DTv distances. Additionally, 40 transcriptomes of 12 species of the genus were assembled and analysed together with all the other published genomes of the Cucurbitaceae family. The duplication was detected in all the Cucurbita species analysed, including C. maxima and C. moschata, but not in the more distant cucurbits belonging to the Cucumis and Citrullus genera, and it is likely to have occurred 30 ± 4 Mya in the ancestral species that gave rise to the genus

    A major QTL located in chromosome 8 of Cucurbita moschata is responsible for resistance to tomato leaf curl New Delhi virus (ToLCNDV)

    Get PDF
    Tomato leaf curl New Delhi virus (ToLCNDV) is a bipartite whitefly transmitted begomovirus, responsible since 2013 of severe damages in cucurbit crops in Southeastern Spain. Zucchini (Cucurbita pepo) is the most affected species, but melon (Cucumis melo) and cucumber (Cucumis sativus) are also highly damaged by the infection. The virus has spread across Mediterranean basin and European countries, and integrated control measures are not being enough to reduce economic losses. The identification of resistance genes is required to develop resistant cultivars. In this assay, we studied the inheritance of the resistance to ToLCNDV previously identified in two Cucurbita moschata accessions. We generated segregating populations crossing both resistant pumpkins, an American improved cultivar Large Cheese (PI 604506) and an Indian landrace (PI 381814), with a susceptible C. moschata genotype (PI 419083). The analysis of symptoms and viral titers of all populations established the same monogenic recessive genetic control in both resistant accessions, and the allelism tests suggest the occurrence of alleles of the same locus. By genotyping with a single nucleotide polymorphism (SNP) collection evenly distributed along the C. moschata genome, a major quantitative trait locus (QTL) was identified in chromosome 8 controlling resistance to ToLCNDV. This major QTL was also confirmed in the interspecific C. moschata × C. pepo segregating populations, although C. pepo genetic background affected the resistance level. Molecular markers here identified, linked to the ToLCNDV resistance locus, are highly valuable for zucchini breeding programs, allowing the selection of improved commercial materials. The duplication of the candidate region within the C. moschata genome was studied, and genes with paralogs or single-copy genes were identified. Its synteny with the region of chromosome 17 of the susceptible C. pepo revealed an INDEL including interesting candidate genes. The chromosome 8 candidate region of C. moschata was also syntenic to the region in chromosome 11 of melon, previously described as responsible of ToLCNDV resistance. Common genes in the candidate regions of both cucurbits, with high- or moderate-impact polymorphic SNPs between resistant and susceptible C. moschata accessions, are interesting to study the mechanisms involved in this recessive resistance

    Early agriculture in Sri Lanka:New Archaeobotanical analyses and radiocarbon dates from the early historic sites of Kirinda and Kantharodai (Kandarodai)

    Get PDF
    Archaeobotanical evidence from two Early Historic sites in Sri Lanka, Kantharodai and Kirinda, is reported, providing significant evidence for agricultural diversity beyond the cultivation of rice. These data highlight the potential of systematic archaeobotanical sampling for macro-remains in tropical environments to contribute to the understanding of subsistence history in the tropics. Direct AMS radiocarbon dating confirms both the antiquity of crops and refines site chronologies. Both sites have Oryza sativa subsp. indica rice and evidence of rice crop-processing and millet farming. In addition, phytolith data provide complementary evidence on the nature of early rice cultivation in Sri Lanka. Both Kantharodai and Kirinda possess rice agriculture and a diverse range of cultivated millets (Brachiaria ramosa, Echinochloa frumentacea, Panicum sumatrense, and Setaria verticillata). Pulses of Indian origin were also cultivated, especially Vigna radiata and Macrotyloma uniflorum. Cotton (Gossypium sp.) cultivation is evident from Kirinda. Both sites, but in particular Kirinda, provide evidence for use of the seeds of Alpinia sp., in the cardamom/ginger family (Zingiberaceae), a plausible wild spice, while coconuts (Cocos nucifera) were also found at Kirinda

    Repeated domestication of melon (Cucumis melo) in Africa and Asia and a new close relative from India

    Full text link
    [EN] Premise of the Study Methods The domestication history of melon is still unclear. An African or Asian origin has been suggested, but its closest wild relative was recently revealed to be an Australian species. The complicated taxonomic history of melon has resulted in additional confusion, with a high number of misidentified germplasm collections currently used by breeders and in genomics research. Using seven DNA regions sequenced for 90% of the genus and the major cultivar groups, we sort out described names and infer evolutionary origins and domestication centers. Key Results Conclusions We found that modern melon cultivars go back to two lineages, which diverged ca. 2 million years ago. One is restricted to Asia (Cucumis melo subsp. melo), and the second, here described as C. melo subsp. meloides, is restricted to Africa. The Asian lineage has given rise to the widely commercialized cultivar groups and their market types, while the African lineage gave rise to cultivars still grown in the Sudanian region. We show that C. trigonus, an overlooked perennial and drought-tolerant species from India is among the closest living relatives of C. melo. Melon was domesticated at least twice: in Africa and Asia. The African lineage and the Indian C. trigonus are exciting new resources for breeding of melons tolerant to climate change.Endl, J.; Achigan-Dako, E.; Pandey, A.; Monforte Gilabert, AJ.; Picó Sirvent, MB.; Schaefer, H. (2018). Repeated domestication of melon (Cucumis melo) in Africa and Asia and a new close relative from India. American Journal of Botany. 105(10):1662-1671. https://doi.org/10.1002/ajb2.1172S166216711051

    Don’t forget to look down - collaborative approaches to predator conservation

    Get PDF
    Finding effective ways of conserving large carnivores is widely recognised as a priority in conservation. However, there is disagreement about the most effective way to do this, with some favouring top-down ‘command and control’ approaches and others favouring collaboration. Arguments for coercive top-down approaches have been presented elsewhere; here we present arguments for collaboration. In many parts of the developed world, flexibility of approach is built into the legislation, so that conservation objectives are balanced with other legitimate goals. In the developing world, limited resources, poverty and weak governance mean that collaborative approaches are likely to play a particularly important part in carnivore conservation. In general, coercive policies may lead to the deterioration of political legitimacy and potentially to non-compliance issues such as illegal killing, whereas collaborative approaches may lead to psychological ownership, enhanced trust, learning, and better social outcomes. Sustainable hunting/trapping plays a crucial part in the conservation and management of many large carnivores. There are many different models for how to conserve carnivores effectively across the world, research is now required to reduce uncertainty and examine the effectiveness of these approaches in different contexts
    corecore