3,903 research outputs found

    Computing the blocks of a quasi-median graph

    Get PDF
    Quasi-median graphs are a tool commonly used by evolutionary biologists to visualise the evolution of molecular sequences. As with any graph, a quasi-median graph can contain cut vertices, that is, vertices whose removal disconnect the graph. These vertices induce a decomposition of the graph into blocks, that is, maximal subgraphs which do not contain any cut vertices. Here we show that the special structure of quasi-median graphs can be used to compute their blocks without having to compute the whole graph. In particular we present an algorithm that, for a collection of nn aligned sequences of length mm, can compute the blocks of the associated quasi-median graph together with the information required to correctly connect these blocks together in run time O(n2m2)\mathcal O(n^2m^2), independent of the size of the sequence alphabet. Our primary motivation for presenting this algorithm is the fact that the quasi-median graph associated to a sequence alignment must contain all most parsimonious trees for the alignment, and therefore precomputing the blocks of the graph has the potential to help speed up any method for computing such trees.Comment: 17 pages, 2 figure

    Bucolic Complexes

    Full text link
    We introduce and investigate bucolic complexes, a common generalization of systolic complexes and of CAT(0) cubical complexes. They are defined as simply connected prism complexes satisfying some local combinatorial conditions. We study various approaches to bucolic complexes: from graph-theoretic and topological perspective, as well as from the point of view of geometric group theory. In particular, we characterize bucolic complexes by some properties of their 2-skeleta and 1-skeleta (that we call bucolic graphs), by which several known results are generalized. We also show that locally-finite bucolic complexes are contractible, and satisfy some nonpositive-curvature-like properties.Comment: 45 pages, 4 figure

    A critical reassessment of the role of mitochondria in tumorigenesis

    Get PDF
    <p><b>Background:</b> Mitochondrial DNA (mtDNA) is being analyzed by an increasing number of laboratories in order to investigate its potential role as an active marker of tumorigenesis in various types of cancer. Here we question the conclusions drawn in most of these investigations, especially those published in high-rank cancer research journals, under the evidence that a significant number of these medical mtDNA studies are based on obviously flawed sequencing results.</p> <p><b>Methods and Findings:</b> In our analyses, we take a phylogenetic approach and employ thorough database searches, which together have proven successful for detecting erroneous sequences in the fields of human population genetics and forensics. Apart from conceptual problems concerning the interpretation of mtDNA variation in tumorigenesis, in most cases, blocks of seemingly somatic mutations clearly point to contamination or sample mix-up and, therefore, have nothing to do with tumorigenesis.</p> <p><b>Conclusion:</b> The role of mitochondria in tumorigenesis remains unclarified. Our findings of laboratory errors in many contributions would represent only the tip of the iceberg since most published studies do not provide the raw sequence data for inspection, thus hindering a posteriori evaluation of the results. There is no precedent for such a concatenation of errors and misconceptions affecting a whole subfield of medical research.</p&gt

    Embedding into the rectilinear plane in optimal O*(n^2)

    Get PDF
    We present an optimal O*(n^2) time algorithm for deciding if a metric space (X,d) on n points can be isometrically embedded into the plane endowed with the l_1-metric. It improves the O*(n^2 log^2 n) time algorithm of J. Edmonds (2008). Together with some ingredients introduced by J. Edmonds, our algorithm uses the concept of tight span and the injectivity of the l_1-plane. A different O*(n^2) time algorithm was recently proposed by D. Eppstein (2009).Comment: 12 pages, 13 figure

    On embeddings of CAT(0) cube complexes into products of trees

    Full text link
    We prove that the contact graph of a 2-dimensional CAT(0) cube complex X{\bf X} of maximum degree Δ\Delta can be coloured with at most ϵ(Δ)=MΔ26\epsilon(\Delta)=M\Delta^{26} colours, for a fixed constant MM. This implies that X{\bf X} (and the associated median graph) isometrically embeds in the Cartesian product of at most ϵ(Δ)\epsilon(\Delta) trees, and that the event structure whose domain is X{\bf X} admits a nice labeling with ϵ(Δ)\epsilon(\Delta) labels. On the other hand, we present an example of a 5-dimensional CAT(0) cube complex with uniformly bounded degrees of 0-cubes which cannot be embedded into a Cartesian product of a finite number of trees. This answers in the negative a question raised independently by F. Haglund, G. Niblo, M. Sageev, and the first author of this paper.Comment: Some small corrections; main change is a correction of the computation of the bounds in Theorem 1. Some figures repaire

    COMs: Complexes of Oriented Matroids

    Full text link
    In his seminal 1983 paper, Jim Lawrence introduced lopsided sets and featured them as asymmetric counterparts of oriented matroids, both sharing the key property of strong elimination. Moreover, symmetry of faces holds in both structures as well as in the so-called affine oriented matroids. These two fundamental properties (formulated for covectors) together lead to the natural notion of "conditional oriented matroid" (abbreviated COM). These novel structures can be characterized in terms of three cocircuits axioms, generalizing the familiar characterization for oriented matroids. We describe a binary composition scheme by which every COM can successively be erected as a certain complex of oriented matroids, in essentially the same way as a lopsided set can be glued together from its maximal hypercube faces. A realizable COM is represented by a hyperplane arrangement restricted to an open convex set. Among these are the examples formed by linear extensions of ordered sets, generalizing the oriented matroids corresponding to the permutohedra. Relaxing realizability to local realizability, we capture a wider class of combinatorial objects: we show that non-positively curved Coxeter zonotopal complexes give rise to locally realizable COMs.Comment: 40 pages, 6 figures, (improved exposition

    Local search heuristics for multi-index assignment problems with decomposable costs.

    Get PDF
    The multi-index assignment problem (MIAP) with decomposable costs is a natural generalization of the well-known assignment problem. Applications of the MIAP arise for instance in the field of multi-target multi-sensor tracking. We describe an (exponentially sized) neighborhood for a solution of the MIAP with decomposable costs, and show that one can find a best solution in this neighborhood in polynomial time. Based on this neighborhood, we propose a local search algorithm. We empirically test the performance of published constructive heuristics and the local search algorithm on random instances; a straightforward tabu search is also tested. Finally, we compute lower bounds to our problem, which enable us to assess the quality of the solutions found.Assignment; Costs; Heuristics; Problems; Applications; Performance;

    CE 333-001: Reinforced Concrete Design

    Get PDF

    CE 630-102: Matrix Analysis of Structure

    Get PDF
    corecore