4,065 research outputs found

    Diffusion of a granular pulse in a rotating drum

    Full text link
    The diffusion of a pulse of small grains in an horizontal rotating drum is studied through discrete elements methods simulations. We present a theoretical analysis of the diffusion process in a one-dimensional confined space in order to elucidate the effect of the confining end-plate of the drum. We then show that the diffusion is neither subdiffusive nor superdiffusive but normal. This is demonstrated by rescaling the concentration profiles obtained at various stages and by studying the time evolution of the mean squared deviation. Finally we study the self-diffusion of both large and small grains and we show that it is normal and that the diffusion coefficient is independent of the grain size

    Shear-induced fragmentation of Laponite suspensions

    Get PDF
    Simultaneous rheological and velocity profile measurements are performed in a smooth Couette geometry on Laponite suspensions seeded with glass microspheres and undergoing the shear-induced solid-to-fluid (or yielding) transition. Under these slippery boundary conditions, a rich temporal behaviour is uncovered, in which shear localization is observed at short times, that rapidly gives way to a highly heterogeneous flow characterized by intermittent switching from plug-like flow to linear velocity profiles. Such a temporal behaviour is linked to the fragmentation of the initially solid sample into blocks separated by fluidized regions. These solid pieces get progressively eroded over time scales ranging from a few minutes to several hours depending on the applied shear rate γ˙\dot{\gamma}. The steady-state is characterized by a homogeneous flow with almost negligible wall slip. The characteristic time scale for erosion is shown to diverge below some critical shear rate γ˙⋆\dot{\gamma}^\star and to scale as (γ˙−γ˙⋆)−n(\dot{\gamma}-\dot{\gamma}^\star)^{-n} with n≃2n\simeq 2 above γ˙⋆\dot{\gamma}^\star. A tentative model for erosion is discussed together with open questions raised by the present results.Comment: 19 pages, 13 figures, submitted to Soft Matte

    The growth of a Super Stable Heap : an experimental and numerical study

    Full text link
    We report experimental and numerical results on the growth of a super stable heap (SSH). Such a regime appears for flows in a thin channel and for high flow rate : the flow occurs atop a nearly static heap whose angle is stabilized by the flowing layer at its top and the side wall friction. The growth of the static heap is investigated in this paper. A theoretical analysis inspired by the BRCE formalism predicts the evolution of the growth process, which is confirmed by both experiments and numerical simulations. The model allows us to link the characteristic time of the growth to the exchange rate between the "moving" and "static" grains. We show that this rate is proportional to the height of the flowing layer even for thick flows. The study of upstream traveling waves sheds new light on the BCRE model

    The S shape of a granular pile in a rotating drum

    Full text link
    The shape of a granular pile in a rotating drum is investigated. Using Discrete Elements Method (DEM) simulations we show that the "S shape" obtained for high rotation speed can be accounted for by the friction on the end plates. A theoretical model which accounts for the effect of the end plates is presented and the equation of the shape of the free surface is derived. The model reveals a dimensionless number which quantifies the influence of the end plates on the shape of the pile. Finally, the scaling laws of the system are discussed and numerical results support our conclusions

    High performance computation of landscape genomic models integrating local indices of spatial association

    Get PDF
    Since its introduction, landscape genomics has developed quickly with the increasing availability of both molecular and topo-climatic data. The current challenges of the field mainly involve processing large numbers of models and disentangling selection from demography. Several methods address the latter, either by estimating a neutral model from population structure or by inferring simultaneously environmental and demographic effects. Here we present Samβ\betaada, an integrated approach to study signatures of local adaptation, providing rapid processing of whole genome data and enabling assessment of spatial association using molecular markers. Specifically, candidate loci to adaptation are identified by automatically assessing genome-environment associations. In complement, measuring the Local Indicators of Spatial Association (LISA) for these candidate loci allows to detect whether similar genotypes tend to gather in space, which constitutes a useful indication of the possible kinship relationship between individuals. In this paper, we also analyze SNP data from Ugandan cattle to detect signatures of local adaptation with Samβ\betaada, BayEnv, LFMM and an outlier method (FDIST approach in Arlequin) and compare their results. Samβ\betaada is an open source software for Windows, Linux and MacOS X available at \url{http://lasig.epfl.ch/sambada}Comment: 1 figure in text, 1 figure in supplementary material The structure of the article was modified and some explanations were updated. The methods and results presented are the same as in the previous versio
    • …
    corecore