22 research outputs found

    Development of the ChatGPT, Generative Artificial Intelligence and Natural Large Language Models for Accountable Reporting and Use (CANGARU) Guidelines

    Full text link
    The swift progress and ubiquitous adoption of Generative AI (GAI), Generative Pre-trained Transformers (GPTs), and large language models (LLMs) like ChatGPT, have spurred queries about their ethical application, use, and disclosure in scholarly research and scientific productions. A few publishers and journals have recently created their own sets of rules; however, the absence of a unified approach may lead to a 'Babel Tower Effect,' potentially resulting in confusion rather than desired standardization. In response to this, we present the ChatGPT, Generative Artificial Intelligence, and Natural Large Language Models for Accountable Reporting and Use Guidelines (CANGARU) initiative, with the aim of fostering a cross-disciplinary global inclusive consensus on the ethical use, disclosure, and proper reporting of GAI/GPT/LLM technologies in academia. The present protocol consists of four distinct parts: a) an ongoing systematic review of GAI/GPT/LLM applications to understand the linked ideas, findings, and reporting standards in scholarly research, and to formulate guidelines for its use and disclosure, b) a bibliometric analysis of existing author guidelines in journals that mention GAI/GPT/LLM, with the goal of evaluating existing guidelines, analyzing the disparity in their recommendations, and identifying common rules that can be brought into the Delphi consensus process, c) a Delphi survey to establish agreement on the items for the guidelines, ensuring principled GAI/GPT/LLM use, disclosure, and reporting in academia, and d) the subsequent development and dissemination of the finalized guidelines and their supplementary explanation and elaboration documents.Comment: 20 pages, 1 figure, protoco

    Bibliometric Analysis of Publisher and Journal Instructions to Authors on Generative-AI in Academic and Scientific Publishing

    Full text link
    We aim to determine the extent and content of guidance for authors regarding the use of generative-AI (GAI), Generative Pretrained models (GPTs) and Large Language Models (LLMs) powered tools among the top 100 academic publishers and journals in science. The websites of these publishers and journals were screened from between 19th and 20th May 2023. Among the largest 100 publishers, 17% provided guidance on the use of GAI, of which 12 (70.6%) were among the top 25 publishers. Among the top 100 journals, 70% have provided guidance on GAI. Of those with guidance, 94.1% of publishers and 95.7% of journals prohibited the inclusion of GAI as an author. Four journals (5.7%) explicitly prohibit the use of GAI in the generation of a manuscript, while 3 (17.6%) publishers and 15 (21.4%) journals indicated their guidance exclusively applies to the writing process. When disclosing the use of GAI, 42.8% of publishers and 44.3% of journals included specific disclosure criteria. There was variability in guidance of where to disclose the use of GAI, including in the methods, acknowledgments, cover letter, or a new section. There was also variability in how to access GAI guidance and the linking of journal and publisher instructions to authors. There is a lack of guidance by some top publishers and journals on the use of GAI by authors. Among those publishers and journals that provide guidance, there is substantial heterogeneity in the allowable uses of GAI and in how it should be disclosed, with this heterogeneity persisting among affiliated publishers and journals in some instances. The lack of standardization burdens authors and threatens to limit the effectiveness of these regulations. There is a need for standardized guidelines in order to protect the integrity of scientific output as GAI continues to grow in popularity.Comment: Pages 16, 1 figure, 2 table

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    Get PDF
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research.Peer reviewe

    Search for single production of vector-like quarks decaying into Wb in pp collisions at s=8\sqrt{s} = 8 TeV with the ATLAS detector

    Get PDF

    Measurement of the charge asymmetry in top-quark pair production in the lepton-plus-jets final state in pp collision data at s=8TeV\sqrt{s}=8\,\mathrm TeV{} with the ATLAS detector

    Get PDF

    Measurements of top-quark pair differential cross-sections in the eμe\mu channel in pppp collisions at s=13\sqrt{s} = 13 TeV using the ATLAS detector

    Get PDF

    Measurement of the W boson polarisation in ttˉt\bar{t} events from pp collisions at s\sqrt{s} = 8 TeV in the lepton + jets channel with ATLAS

    Get PDF

    Measurement of the bbb\overline{b} dijet cross section in pp collisions at s=7\sqrt{s} = 7 TeV with the ATLAS detector

    Get PDF

    Charged-particle distributions at low transverse momentum in s=13\sqrt{s} = 13 TeV pppp interactions measured with the ATLAS detector at the LHC

    Get PDF

    Search for dark matter in association with a Higgs boson decaying to bb-quarks in pppp collisions at s=13\sqrt s=13 TeV with the ATLAS detector

    Get PDF
    corecore